Multifunctional Materials through Modular Protein Engineering

被引:174
作者
DiMarco, Rebecca L. [2 ]
Heilshorn, Sarah C. [1 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
INVERSE TEMPERATURE TRANSITION; ELASTIN-LIKE POLYPEPTIDE; THERMALLY RESPONSIVE POLYMERS; EXTRACELLULAR-MATRIX PROTEIN; NONCANONICAL AMINO-ACIDS; SOLID-STATE NMR; SPIDER SILK; DRUG-DELIVERY; CROSS-LINKING; IN-VIVO;
D O I
10.1002/adma.201200051
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The diversity of potential applications for protein-engineered materials has undergone profound recent expansion through a rapid increase in the library of domains that have been utilized in these materials. Historically, protein-engineered biomaterials have been generated from a handful of peptides that were selected and exploited for their naturally evolved functionalities. In recent years, the scope of the field has drastically expanded to include peptide domains that were designed through computational modeling, identified through high-throughput screening, or repurposed from wild type domains to perform functions distinct from their primary native applications. The strategy of exploiting a diverse library of peptide domains to design modular block copolymers enables the synthesis of multifunctional protein-engineered materials with a range of customizable properties and activities. As the diversity of peptide domains utilized in modular protein engineering continues to expand, a tremendous and ever-growing combinatorial expanse of material functionalities will result.
引用
收藏
页码:3923 / 3940
页数:18
相关论文
共 134 条
[1]   Silk matrix for tissue engineered anterior cruciate ligaments [J].
Altman, GH ;
Horan, RL ;
Lu, HH ;
Moreau, J ;
Martin, I ;
Richmond, JC ;
Kaplan, DL .
BIOMATERIALS, 2002, 23 (20) :4131-4141
[2]   CROSS-LINKS IN RESILIN IDENTIFIED AS DITYROSINE + TRITYROSINE [J].
ANDERSEN, SO .
BIOCHIMICA ET BIOPHYSICA ACTA, 1964, 93 (01) :213-&
[3]  
ANDERSEN SVEND OLAV, 1964, ADVANCES INSECT PHYSIOL, V2, P1, DOI 10.1016/S0065-2806(08)60071-5
[4]   EXPRESSION OF HUMAN B CELL-ASSOCIATED ANTIGENS ON LEUKEMIAS AND LYMPHOMAS - A MODEL OF HUMAN B-CELL DIFFERENTIATION [J].
ANDERSON, KC ;
BATES, MP ;
SLAUGHENHOUPT, BL ;
PINKUS, GS ;
SCHLOSSMAN, SF ;
NADLER, LM .
BLOOD, 1984, 63 (06) :1424-1433
[5]   Expression and characterization of human-elastin-repeat-based temperature-responsive protein polymers for biotechnological purposes [J].
Bandiera, A ;
Taglienti, A ;
Micali, F ;
Pani, B ;
Tamaro, M ;
Crescenzi, V ;
Manzini, G .
BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2005, 42 :247-256
[6]   Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs [J].
Bessa, Paulo C. ;
Machado, Raul ;
Nuernberger, Sylvia ;
Dopler, Daniela ;
Banerjee, Asmita ;
Cunha, Antonio M. ;
Carlos Rodriguez-Cabello, J. ;
Redl, Heinz ;
van Griensven, Martijn ;
Reis, Rui L. ;
Casal, Margarida .
JOURNAL OF CONTROLLED RELEASE, 2010, 142 (03) :312-318
[7]   Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin [J].
Bidwell, Gene L., III ;
Fokt, Izabela ;
Priebe, Waldemar ;
Raucher, Drazen .
BIOCHEMICAL PHARMACOLOGY, 2007, 73 (05) :620-631
[8]   RGD-functionalized bioengineered spider dragline silk biomaterial [J].
Bini, Elisabetta ;
Foo, Cheryl Wong Po ;
Huang, Jia ;
Karageorgiou, Vassilis ;
Kitchel, Brandon ;
Kaplan, David L. .
BIOMACROMOLECULES, 2006, 7 (11) :3139-3145
[9]   Injectable biomaterials and vertebral endplate treatment for repair and regeneration of the intervertebral disc [J].
Boyd, Lawrence M. ;
Carter, Andrew J. .
EUROPEAN SPINE JOURNAL, 2006, 15 (Suppl 3) :S414-S421
[10]   Structure and evolution of the genetic code viewed from the perspective of the experimentally expanded amino acid repertoire in vivo [J].
Budisa, N ;
Moroder, L ;
Huber, R .
CELLULAR AND MOLECULAR LIFE SCIENCES, 1999, 55 (12) :1626-1635