Implications of threonine hydrogen bonding in the glycophorin A transmembrane helix dimer

被引:95
作者
Smith, SO [1 ]
Eilers, M
Song, D
Crocker, E
Ying, WW
Groesbeek, M
Metz, G
Ziliox, M
Aimoto, S
机构
[1] SUNY Stony Brook, Ctr Struct Biol, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA
[2] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06510 USA
[3] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[4] Osaka Univ, Inst Prot Res, Suita, Osaka 5650871, Japan
关键词
D O I
10.1016/S0006-3495(02)75590-2
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The transmembrane helix of glycophorin A contains a seven-residue motif, LIxxGVxxGVxxT, that mediates protein dimerization. Threonine is the only polar amino acid in this motif with the potential to stabilize the dimer through hydrogen-bonding interactions. Polarized Fourier transform infrared spectroscopy is used to establish a robust protocol for incorporating glycophorin A transmembrane peptides into membrane bilayers. Analysis of the dichroic ratio of the 1655-cm(-1) amide I vibration indicates that peptides reconstituted by detergent dialysis have a transmembrane orientation with a helix crossing angle of <35°. Solid-state nuclear magnetic resonance spectroscopy is used to establish high resolution structural restraints on the conformation and packing of Thr-87 in the dimer interface. Rotational resonance measurement of a 2.9-&ANGS; distance between the γ-methyl and backbone carbonyl carbons of Thr-87 is consistent with a gauche- conformation for the χ1 torsion angle. Rotational-echo double-resonance measurements demonstrate close packing (4.0 +/- 0.2 &ANGS;) of the Thr-87 γ-methyl group with the backbone nitrogen of lle-88 across the dimer interface. The short interhelical distance places the β-hydroxyl of Thr-87 within hydrogen-bonding range of the backbone carbonyl of Val-84 on the opposing helix. These results refine the structure of the glycophorin A dimer in membrane bilayers and highlight the complementary role of small and polar residues in the tight association of transmembrane helices in membrane proteins.
引用
收藏
页码:2476 / 2486
页数:11
相关论文
共 51 条
[11]   Internal packing of helical membrane proteins [J].
Eilers, M ;
Shekar, SC ;
Shieh, T ;
Smith, SO ;
Fleming, PJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) :5796-5801
[12]   Comparison of helix interactions in membrane and soluble α-bundle proteins [J].
Eilers, M ;
Patel, AB ;
Liu, W ;
Smith, SO .
BIOPHYSICAL JOURNAL, 2002, 82 (05) :2720-2736
[13]   Detergents modulate dimerization but not helicity, of the glycophorin A transmembrane domain [J].
Fisher, LE ;
Engelman, DM ;
Sturgis, JN .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 293 (03) :639-651
[14]   The effect of point mutations on the free energy of transmembrane alpha-helix dimerization [J].
Fleming, KG ;
Ackerman, AL ;
Engelman, DM .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (02) :266-275
[15]   POLARIZED INFRARED-ABSORPTION OF NA+/K+-ATPASE STUDIED BY ATTENUATED TOTAL REFLECTION SPECTROSCOPY [J].
FRINGELI, UP ;
APELL, HJ ;
FRINGELI, M ;
LAUGER, P .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 984 (03) :301-312
[16]   Polar side chains drive the association of model transmembrane peptides [J].
Gratkowski, H ;
Lear, JD ;
DeGrado, WF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (03) :880-885
[17]   INTRAHELICAL HYDROGEN-BONDING OF SERINE, THREONINE AND CYSTEINE RESIDUES WITHIN ALPHA-HELICES AND ITS RELEVANCE TO MEMBRANE-BOUND PROTEINS [J].
GRAY, TM ;
MATTHEWS, BW .
JOURNAL OF MOLECULAR BIOLOGY, 1984, 175 (01) :75-81
[18]   Electron-crystallographic refinement of the structure of bacteriorhodopsin [J].
Grigorieff, N ;
Ceska, TA ;
Downing, KH ;
Baldwin, JM ;
Henderson, R .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 259 (03) :393-421
[19]   ROTATIONAL-ECHO DOUBLE-RESONANCE NMR [J].
GULLION, T ;
SCHAEFER, J .
JOURNAL OF MAGNETIC RESONANCE, 1989, 81 (01) :196-200
[20]   ELIMINATION OF RESONANCE OFFSET EFFECTS IN ROTATIONAL-ECHO, DOUBLE-RESONANCE NMR [J].
GULLION, T ;
SCHAEFER, J .
JOURNAL OF MAGNETIC RESONANCE, 1991, 92 (02) :439-442