Implications of threonine hydrogen bonding in the glycophorin A transmembrane helix dimer

被引:95
作者
Smith, SO [1 ]
Eilers, M
Song, D
Crocker, E
Ying, WW
Groesbeek, M
Metz, G
Ziliox, M
Aimoto, S
机构
[1] SUNY Stony Brook, Ctr Struct Biol, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA
[2] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06510 USA
[3] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[4] Osaka Univ, Inst Prot Res, Suita, Osaka 5650871, Japan
关键词
D O I
10.1016/S0006-3495(02)75590-2
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The transmembrane helix of glycophorin A contains a seven-residue motif, LIxxGVxxGVxxT, that mediates protein dimerization. Threonine is the only polar amino acid in this motif with the potential to stabilize the dimer through hydrogen-bonding interactions. Polarized Fourier transform infrared spectroscopy is used to establish a robust protocol for incorporating glycophorin A transmembrane peptides into membrane bilayers. Analysis of the dichroic ratio of the 1655-cm(-1) amide I vibration indicates that peptides reconstituted by detergent dialysis have a transmembrane orientation with a helix crossing angle of <35°. Solid-state nuclear magnetic resonance spectroscopy is used to establish high resolution structural restraints on the conformation and packing of Thr-87 in the dimer interface. Rotational resonance measurement of a 2.9-&ANGS; distance between the γ-methyl and backbone carbonyl carbons of Thr-87 is consistent with a gauche- conformation for the χ1 torsion angle. Rotational-echo double-resonance measurements demonstrate close packing (4.0 +/- 0.2 &ANGS;) of the Thr-87 γ-methyl group with the backbone nitrogen of lle-88 across the dimer interface. The short interhelical distance places the β-hydroxyl of Thr-87 within hydrogen-bonding range of the backbone carbonyl of Val-84 on the opposing helix. These results refine the structure of the glycophorin A dimer in membrane bilayers and highlight the complementary role of small and polar residues in the tight association of transmembrane helices in membrane proteins.
引用
收藏
页码:2476 / 2486
页数:11
相关论文
共 51 条
[21]  
Harrick N.J., 1967, INTERNAL REFLECTION
[22]   RHODOPSIN PHOSPHOLIPID RECONSTITUTION BY DIALYSIS REMOVAL OF OCTYL GLUCOSIDE [J].
JACKSON, ML ;
LITMAN, BJ .
BIOCHEMISTRY, 1982, 21 (22) :5601-5608
[23]   Helix packing in polytopic membrane proteins: Role of glycine in transmembrane helix association [J].
Javadpour, MM ;
Eilers, M ;
Groesbeek, M ;
Smith, SO .
BIOPHYSICAL JOURNAL, 1999, 77 (03) :1609-1618
[24]  
LEMMON MA, 1992, J BIOL CHEM, V267, P7683
[25]   SPECIFICITY AND PROMISCUITY IN MEMBRANE HELIX INTERACTIONS [J].
LEMMON, MA ;
ENGELMAN, DM .
QUARTERLY REVIEWS OF BIOPHYSICS, 1994, 27 (02) :157-218
[26]   SEQUENCE SPECIFICITY IN THE DIMERIZATION OF TRANSMEMBRANE ALPHA-HELICES [J].
LEMMON, MA ;
FLANAGAN, JM ;
TREUTLEIN, HR ;
ZHANG, J ;
ENGELMAN, DM .
BIOCHEMISTRY, 1992, 31 (51) :12719-12725
[27]   THEORY AND SIMULATIONS OF HOMONUCLEAR SPIN PAIR SYSTEMS IN ROTATING SOLIDS [J].
LEVITT, MH ;
RALEIGH, DP ;
CREUZET, F ;
GRIFFIN, RG .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (11) :6347-6364
[28]  
Lovell SC, 2000, PROTEINS, V40, P389, DOI 10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO
[29]  
2-2
[30]   Structure of bacteriorhodopsin at 1.55 Å resolution [J].
Luecke, H ;
Schobert, B ;
Richter, HT ;
Cartailler, JP ;
Lanyi, JK .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 291 (04) :899-911