Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster

被引:20
作者
He, Bing [1 ]
Caudy, Amy [2 ]
Parsons, Lance [2 ]
Rosebrock, Adam [3 ]
Pane, Attilio [1 ]
Raj, Sandeep [1 ]
Wieschaus, Eric [1 ,4 ]
机构
[1] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[2] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[3] SUNY Stony Brook, Dept Microbiol & Mol Genet, Stony Brook, NY 11794 USA
[4] Princeton Univ, Howard Hughes Med Inst, Princeton, NJ 08544 USA
基金
美国国家卫生研究院;
关键词
DNA-SEQUENCES; CYTOGENETIC ANALYSIS; RIBOSOMAL DNA; FISSION YEAST; GENE ACTIVITY; TRANSCRIPTION; SEGREGATION; ELEMENTS; REQUIREMENTS; TRANSPOSONS;
D O I
10.1101/gr.137406.112
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heterochromatin represents a significant portion of eukaryotic genomes and has essential structural and regulatory functions. Its molecular organization is largely unknown due to difficulties in sequencing through and assembling repetitive sequences enriched in the heterochromatin. Here we developed a novel strategy using chromosomal rearrangements and embryonic phenotypes to position unmapped Drosophila melanogaster heterochromatic sequence to specific chromosomal regions. By excluding sequences that can be mapped to the assembled euchromatic arms, we identified sequences that are specific to heterochromatin and used them to design heterochromatin specific probes ("H-probes'') for microarray. By comparative genomic hybridization (CGH) analyses of embryos deficient for each chromosome or chromosome arm, we were able to map most of our H-probes to specific chromosome arms. We also positioned sequences mapped to the second and X chromosomes to finer intervals by analyzing smaller deletions with breakpoints in heterochromatin. Using this approach, we were able to map >40% (13.9 Mb) of the previously unmapped heterochromatin sequences assembled by the whole-genome sequencing effort on arm U and arm Uextra to specific locations. We also identified and mapped 110 kb of novel heterochromatic sequences. Subsequent analyses revealed that sequences located within different heterochromatic regions have distinct properties, such as sequence composition, degree of repetitiveness, and level of underreplication in polytenized tissues. Surprisingly, although heterochromatin is generally considered to be transcriptionally silent, we detected region-specific temporal patterns of transcription in heterochromatin during oogenesis and early embryonic development. Our study provides a useful approach to elucidate the molecular organization and function of heterochromatin and reveals region-specific variation of heterochromatin.
引用
收藏
页码:2507 / 2519
页数:13
相关论文
共 54 条
  • [11] Perturbation of nuclear architecture by long-distance chromosome interactions
    Dernburg, AF
    Broman, KW
    Fung, JC
    Marshall, WF
    Philips, J
    Agard, DA
    Sedat, JW
    [J]. CELL, 1996, 85 (05) : 745 - 759
  • [12] DIMITRI P, 1991, GENETICS, V127, P553
  • [13] The paradox of functional heterochromatin
    Dimitri, P
    Corradini, N
    Rossi, F
    Vernì, F
    [J]. BIOESSAYS, 2005, 27 (01) : 29 - 41
  • [14] Constitutive heterochromatin: a surprising variety of expressed sequences
    Dimitri, Patrizio
    Caizzi, Ruggiero
    Giordano, Ennio
    Accardo, Maria Carmela
    Lattanzi, Giovanna
    Biamonti, Giuseppe
    [J]. CHROMOSOMA, 2009, 118 (04) : 419 - 435
  • [15] Species-Specific Heterochromatin Prevents Mitotic Chromosome Segregation to Cause Hybrid Lethality in Drosophila
    Ferree, Patrick M.
    Barbash, Daniel A.
    [J]. PLOS BIOLOGY, 2009, 7 (10)
  • [16] Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila Cells
    Filion, Guillaume J.
    van Bemmel, Joke G.
    Braunschweig, Ulrich
    Talhout, Wendy
    Kind, Jop
    Ward, Lucas D.
    Brugman, Wim
    de Castro, Ines J.
    Kerkhoven, Ron M.
    Bussemaker, Harmen J.
    van Steensel, Bas
    [J]. CELL, 2010, 143 (02) : 212 - 224
  • [17] LOOKING AT DROSOPHILA MITOTIC CHROMOSOMES
    GATTI, M
    BONACCORSI, S
    PIMPINELLI, S
    [J]. METHODS IN CELL BIOLOGY, VOL 44: DROSOPHILA MELANOGASTER: PRACTICAL USES IN CELL AND MOLECULAR BIOLOGY, 1994, 44 : 371 - 391
  • [18] FUNCTIONAL ELEMENTS IN DROSOPHILA-MELANOGASTER HETEROCHROMATIN
    GATTI, M
    PIMPINELLI, S
    [J]. ANNUAL REVIEW OF GENETICS, 1992, 26 : 239 - 275
  • [19] Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells
    Ghildiyal, Megha
    Seitz, Herve
    Horwich, Michael D.
    Li, Chengjian
    Du, Tingting
    Lee, Soohyun
    Xu, Jia
    Kittler, Ellen L. W.
    Zapp, Maria L.
    Weng, Zhiping
    Zamore, Phillip D.
    [J]. SCIENCE, 2008, 320 (5879) : 1077 - 1081
  • [20] The developmental transcriptome of Drosophila melanogaster
    Graveley, Brenton R.
    Brooks, Angela N.
    Carlson, JosephW.
    Duff, Michael O.
    Landolin, Jane M.
    Yang, Li
    Artieri, Carlo G.
    van Baren, Marijke J.
    Boley, Nathan
    Booth, Benjamin W.
    Brown, James B.
    Cherbas, Lucy
    Davis, Carrie A.
    Dobin, Alex
    Li, Renhua
    Lin, Wei
    Malone, John H.
    Mattiuzzo, Nicolas R.
    Miller, David
    Sturgill, David
    Tuch, Brian B.
    Zaleski, Chris
    Zhang, Dayu
    Blanchette, Marco
    Dudoit, Sandrine
    Eads, Brian
    Green, Richard E.
    Hammonds, Ann
    Jiang, Lichun
    Kapranov, Phil
    Langton, Laura
    Perrimon, Norbert
    Sandler, Jeremy E.
    Wan, Kenneth H.
    Willingham, Aarron
    Zhang, Yu
    Zou, Yi
    Andrews, Justen
    Bickel, Peter J.
    Brenner, Steven E.
    Brent, Michael R.
    Cherbas, Peter
    Gingeras, Thomas R.
    Hoskins, Roger A.
    Kaufman, Thomas C.
    Oliver, Brian
    Celniker, Susan E.
    [J]. NATURE, 2011, 471 (7339) : 473 - 479