New explicit exact solutions of the Born-Infeld equation

被引:13
作者
Xie, Yuanxi [1 ]
Tang, Jiashi
机构
[1] Human Inst Sci & Technol, Dept Phys, Yueyang 414000, Peoples R China
[2] Hunan Univ, Dept Engn Mech, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
auxiliary ordinary differential equation; Born-Infeld equation; explicit exact solution;
D O I
10.1007/s10773-005-9002-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By introducing an auxiliary ordinary differential equation and solving it by means of the method of separation of variables, many new explicit exact solutions to the Born-Infeld equation are found in a concise manner.
引用
收藏
页码:7 / 17
页数:11
相关论文
共 15 条
[1]   Travelling solitary wave solutions to a seventh-order generalized KdV equation [J].
Duffy, BR ;
Parkes, EJ .
PHYSICS LETTERS A, 1996, 214 (5-6) :271-272
[2]   New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 290 (1-2) :72-76
[3]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74
[4]   A simple fast method in finding particular solutions of some nonlinear PDE [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2001, 22 (03) :326-331
[5]   SOLITARY WAVE SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
MALFLIET, W .
AMERICAN JOURNAL OF PHYSICS, 1992, 60 (07) :650-654
[6]   EXACT TRAVELING WAVE SOLUTIONS OF A CLASS OF NONLINEAR DIFFUSION-EQUATIONS BY REDUCTION TO A QUADRATURE [J].
OTWINOWSKI, M ;
PAUL, R ;
LAIDLAW, WG .
PHYSICS LETTERS A, 1988, 128 (09) :483-487
[7]   Travelling solitary wave solutions to a compound KdV-Burgers equation [J].
Parkes, EJ ;
Duffy, BR .
PHYSICS LETTERS A, 1997, 229 (04) :217-220
[8]   The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations [J].
Parkes, EJ ;
Duffy, BR ;
Abbott, PC .
PHYSICS LETTERS A, 2002, 295 (5-6) :280-286
[9]   New exact solutions to the combined KdV and mKdV equation [J].
Peng, YZ .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (04) :863-868
[10]  
SIREN DR, 2002, PHYS LETT A, V298, P133