Radiation Dose-Dependent Maintenance of G2 Arrest Requires Retinoblastoma Protein

被引:20
作者
Naderi, Soheil [1 ,2 ,3 ]
Hunton, Irina C. [1 ,2 ]
Wang, Jean Y. J. [1 ,2 ]
机构
[1] Univ Calif San Diego, Div Biol, La Jolla, CA 92090 USA
[2] Univ Calif San Diego, Canc Ctr, La Jolla, CA 92090 USA
[3] Univ Oslo, Dept Med Biochem, N-0317 Oslo, Norway
关键词
RB phosphorylation; Ionizing radiation; DNA damage; G2; checkpoint; Mouse embryo fibroblasts;
D O I
10.4161/cc.1.3.125
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In response to ionizing radiation (IR), cell cycle checkpoints are activated to provide time for DNA repair. Several different checkpoint mechanisms have been elucidated. However, mechanisms that regulate the duration of cell cycle arrest are not understood. Previous studies have shown that the retinoblastoma tumor suppressor protein (RB) is required for radiation-induced G1 arrest. Working with primary fibroblasts derived from Rb+/+ and Rb-/- mouse embryos, we show that RB also regulates the duration of G2 arrest. The initial G2 checkpoint response is enhanced in Rb-/- cells due to a defect in G1 arrest. However, the permanent arrest in G2 induced by higher doses of IR does not occur in Rb-/- cells. Rb-/- cells either resumed proliferation or underwent apoptosis at IR doses that caused the majority of Rb+/+ cells to arrest permanently in G2. The prolongation of G2 arrest in Rb+/+ cells correlated with a gradual accumulation of hypophosphorylated RB. Thus, regulation of the RB function may be an important aspect in the maintenance of cell cycle checkpoints in DNA damage response.
引用
收藏
页码:193 / 200
页数:8
相关论文
共 44 条
[1]   DEFICIENCY OF RETINOBLASTOMA PROTEIN LEADS TO INAPPROPRIATE S-PHASE ENTRY, ACTIVATION OF E2F-RESPONSIVE GENES, AND APOPTOSIS [J].
ALMASAN, A ;
YIN, YX ;
KELLY, RE ;
LEE, EYHP ;
BRADLEY, A ;
LI, WW ;
BERTINO, JR ;
WAHL, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (12) :5436-5440
[2]   Repression of CDK1 and other genes with CDE and CHR promoter elements during DNA damage-induced G2/M arrest in human cells [J].
Badie, C ;
Itzhaki, JE ;
Sullivan, MJ ;
Carpenter, AJ ;
Porter, ACG .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (07) :2358-2366
[3]   The retinoblastoma protein pathway in cell cycle control and cancer [J].
Bartek, J ;
Bartkova, J ;
Lukas, J .
EXPERIMENTAL CELL RESEARCH, 1997, 237 (01) :1-6
[4]   Inhibition of cyclin-dependent kinase 2 by p21 is necessary for retinoblastoma protein-mediated G1 arrest after γ-irradiation [J].
Brugarolas, J ;
Moberg, K ;
Boyd, SD ;
Taya, Y ;
Jacks, T ;
Lees, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (03) :1002-1007
[5]   Requirement for p53 and p21 to sustain G2 arrest after DNA damage [J].
Bunz, F ;
Dutriaux, A ;
Lengauer, C ;
Waldman, T ;
Zhou, S ;
Brown, JP ;
Sedivy, JM ;
Kinzler, KW ;
Vogelstein, B .
SCIENCE, 1998, 282 (5393) :1497-1501
[6]   pRB phosphorylation mutants reveal role of pRB in regulating S phase completion by a mechanism independent of E2F [J].
Chew, YP ;
Ellis, M ;
Wilkie, S ;
Mittnacht, S .
ONCOGENE, 1998, 17 (17) :2177-2186
[7]  
Dalal SN, 1999, MOL CELL BIOL, V19, P4465
[8]  
de Toledo SM, 1998, CELL GROWTH DIFFER, V9, P887
[9]   WAF1, A POTENTIAL MEDIATOR OF P53 TUMOR SUPPRESSION [J].
ELDEIRY, WS ;
TOKINO, T ;
VELCULESCU, VE ;
LEVY, DB ;
PARSONS, R ;
TRENT, JM ;
LIN, D ;
MERCER, WE ;
KINZLER, KW ;
VOGELSTEIN, B .
CELL, 1993, 75 (04) :817-825
[10]   p53 Regulation of G2 checkpoint is retinoblastoma protein dependent [J].
Flatt, PM ;
Tang, LJ ;
Scatena, CD ;
Szak, ST ;
Pietenpol, JA .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (12) :4210-4223