Hierarchical Regression for Analyses of Multiple Outcomes

被引:66
作者
Richardson, David B. [1 ]
Hamra, Ghassan B. [1 ]
MacLehose, Richard F. [1 ]
Cole, Stephen R. [1 ]
Chu, Haitao [1 ]
机构
[1] Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USA
关键词
cohort studies; epidemiologic methods; models; statistical; Poisson regression; statistics; ATOMIC-BOMB SURVIVORS; FOLLOW-UP; CANCER-MORTALITY; RISK ASSESSMENT; SOLID CANCER; WORKERS; EXPOSURE; COHORT; 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN; DISEASE;
D O I
10.1093/aje/kwv047
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
In cohort mortality studies, there often is interest in associations between an exposure of primary interest and mortality due to a range of different causes. A standard approach to such analyses involves fitting a separate regression model for each type of outcome. However, the statistical precision of some estimated associations may be poor because of sparse data. In this paper, we describe a hierarchical regression model for estimation of parameters describing outcome-specific relative rate functions and associated credible intervals. The proposed model uses background stratification to provide flexible control for the outcome-specific associations of potential confounders, and it employs a hierarchical "shrinkage" approach to stabilize estimates of an exposure's associations with mortality due to different causes of death. The approach is illustrated in analyses of cancer mortality in 2 cohorts: a cohort of dioxin-exposed US chemical workers and a cohort of radiation-exposed Japanese atomic bomb survivors. Compared with standard regression estimates of associations, hierarchical regression yielded estimates with improved precision that tended to have less extreme values. The hierarchical regression approach also allowed the fitting of models with effect-measure modification. The proposed hierarchical approach can yield estimates of association that are more precise than conventional estimates when one wishes to estimate associations with multiple outcomes.
引用
收藏
页码:459 / 467
页数:9
相关论文
共 32 条
[1]  
[Anonymous], HLTH EFF EXP LOW LEV
[2]  
[Anonymous], 2006, Health Risks from Exposure to Low Levels of Ionizing Radiation
[3]   The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry:: Estimates of radiation-related cancer risks [J].
Cardis, E. ;
Vrijheid, M. ;
Blettner, M. ;
Gilbert, E. ;
Hakama, M. ;
Hill, C. ;
Howe, G. ;
Kaldor, J. ;
Muirhead, C. R. ;
Schubauer-Berigan, M. ;
Yoshimura, T. ;
Bermann, F. ;
Cowper, G. ;
Fix, J. ;
Hacker, C. ;
Heinmiller, B. ;
Marshall, M. ;
Thierry-Chef, I. ;
Utterback, D. ;
Ahn, Y-O ;
Amoros, E. ;
Ashmore, P. ;
Auvinen, A. ;
Bae, J-M. ;
Bernar, J. ;
Biau, A. ;
Combalot, E. ;
Deboodt, P. ;
Sacristan, A. Diez ;
Eklof, M. ;
Engels, H. ;
Engholm, G. ;
Gulis, G. ;
Habib, R. R. ;
Holan, K. ;
Hyvonen, H. ;
Kerekes, A. ;
Kurtinaitis, J. ;
Malker, H. ;
Martuzzi, M. ;
Mastauskas, A. ;
Monnet, A. ;
Moser, M. ;
Pearce, M. S. ;
Richardson, D. B. ;
Rodriguez-Artalejo, F. ;
Rogel, A. ;
Tardy, H. ;
Telle-Lamberton, M. ;
Turai, I. .
RADIATION RESEARCH, 2007, 167 (04) :396-416
[4]   Prior distributions for variance parameters in hierarchical models(Comment on an Article by Browne and Draper) [J].
Gelman, Andrew .
BAYESIAN ANALYSIS, 2006, 1 (03) :515-533
[5]   A WEAKLY INFORMATIVE DEFAULT PRIOR DISTRIBUTION FOR LOGISTIC AND OTHER REGRESSION MODELS [J].
Gelman, Andrew ;
Jakulin, Aleks ;
Pittau, Maria Grazia ;
Su, Yu-Sung .
ANNALS OF APPLIED STATISTICS, 2008, 2 (04) :1360-1383
[6]   Principles of multilevel modelling [J].
Greenland, S .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2000, 29 (01) :158-167
[7]   A SEMI-BAYES APPROACH TO THE ANALYSIS OF CORRELATED MULTIPLE ASSOCIATIONS, WITH AN APPLICATION TO AN OCCUPATIONAL CANCER-MORTALITY STUDY [J].
GREENLAND, S .
STATISTICS IN MEDICINE, 1992, 11 (02) :219-230
[8]   HIERARCHICAL REGRESSION FOR EPIDEMIOLOGIC ANALYSES OF MULTIPLE EXPOSURES [J].
GREENLAND, S .
ENVIRONMENTAL HEALTH PERSPECTIVES, 1994, 102 :33-39
[9]   Follow-up study of chrysotile textile workers: cohort mortality and exposure-response [J].
Hein, Misty J. ;
Stayner, Leslie T. ;
Lehman, Everett ;
Dement, John M. .
OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2007, 64 (09) :616-625
[10]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&