Variable metric bundle methods: From conceptual to implementable forms

被引:112
作者
Lemarechal, C
Sagastizabal, C
机构
[1] INRIA, 78153 Le Chesnay
关键词
convex optimization; proximal point; bundle method; Quasi-Newton;
D O I
10.1007/BF02614390
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
To minimize a convex function, we combine Moreau-Yosida regularizations, quasi-Newton matrices and bundling mechanisms. First we develop conceptual forms using ''reversal'' quasi-Newton formulae and we state their global and local convergence. Then, to produce implementable versions, we incorporate a bundle strategy together with a ''curve-search''. No convergence results are given for the implementable versions; however some numerical illustrations show their good behaviour even for large-scale problems.
引用
收藏
页码:393 / 410
页数:18
相关论文
共 30 条
[1]  
[Anonymous], 1976, P NONL PROGR SIAM AM
[2]  
AUSLENDER A, 1987, MATH PROGRAM STUD, V30, P102, DOI 10.1007/BFb0121157
[3]   A FAMILY OF VARIABLE-METRIC PROXIMAL METHODS [J].
BONNANS, JF ;
GILBERT, JC ;
LEMARECHAL, C ;
SAGASTIZABAL, CA .
MATHEMATICAL PROGRAMMING, 1995, 68 (01) :15-47
[4]  
BRANNLUND U, 1993, THESIS ROYAL I TECHN
[5]  
Cheney E. W., 1959, Numerische Mathematik, V1, P253, DOI [DOI 10.1007/BF01386389, 10.1007/bf01386389]
[6]   CONVERGENCE OF SOME ALGORITHMS FOR CONVEX MINIMIZATION [J].
CORREA, R ;
LEMARECHAL, C .
MATHEMATICAL PROGRAMMING, 1993, 62 (02) :261-275
[7]   QUASI-NEWTON METHODS, MOTIVATION AND THEORY [J].
DENNIS, JE ;
MORE, JJ .
SIAM REVIEW, 1977, 19 (01) :46-89
[8]   A globally and superlinearly convergent algorithm for nonsmooth convex minimization [J].
Fukushima, M ;
Qi, LQ .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (04) :1106-1120
[9]   A DESCENT ALGORITHM FOR NONSMOOTH CONVEX-OPTIMIZATION [J].
FUKUSHIMA, M .
MATHEMATICAL PROGRAMMING, 1984, 30 (02) :163-175
[10]  
GULER O, 1991, SIAM J CONTROL OPTIM, V29, P403, DOI 10.1137/0329022