Charge Transport in Disordered Graphene-Based Low Dimensional Materials

被引:281
作者
Cresti, Alessandro [1 ,2 ]
Nemec, Norbert [3 ]
Biel, Blanca [1 ,2 ]
Niebler, Gabriel [4 ,5 ]
Triozon, Francois [2 ]
Cuniberti, Gianaurelio [4 ]
Roche, Stephan [1 ]
机构
[1] INAC SPSMS GT, CEA, Inst Nanosci & Cryogen, F-38054 Grenoble 9, France
[2] MINATEC, LETI, CEA, F-38054 Grenoble, France
[3] Univ Cambridge, Cavendish Lab, Condensed Matter Theory Grp, Cambridge CB2 17N, England
[4] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[5] Charles Univ Prague, Fac Math & Phys, Dept Condensed Matter Phys, CR-12116 Prague 2, Czech Republic
关键词
Graphene; charge transport; carbon nanotubes;
D O I
10.1007/s12274-008-8043-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional graphene, carbon nanotubes, and graphene nanoribbons represent a novel class of low dimensional materials that could serve as building blocks for future carbon-based nanoelectronics. Although these systems share a similar underlying electronic structure, whose exact details depend on confinement effects, crucial differences emerge when disorder comes into play. In this review, we consider the transport properties of these materials, with particular emphasis on the case of graphene nanoribbons. After summarizing the electronic and transport properties of defect-free systems, we focus on the effects of a model disorder potential (Anderson-type), and illustrate how transport properties are sensitive to the underlying symmetry. We provide analytical expressions for the elastic mean free path of carbon nanotubes and graphene nanoribbons, and discuss the onset of weak and strong localization regimes, which are genuinely dependent on the transport dimensionality. We also consider the effects of edge disorder and roughness for graphene nanoribbons in relation to their armchair or zigzag orientation.
引用
收藏
页码:361 / 394
页数:34
相关论文
共 165 条
  • [31] Shot noise in ballistic graphene
    Danneau, R.
    Wu, F.
    Craciun, M. F.
    Russo, S.
    Tomi, M. Y.
    Salmilehto, J.
    Morpurgo, A. F.
    Hakonen, P. J.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (19)
  • [32] Datta S., 1997, Electronic Transport in Mesoscopic Systems
  • [33] DAYEN JF, 2008, ARXIV07122314V2
  • [34] Epitaxial graphene
    de Heer, Walt A.
    Berger, Claire
    Wu, Xiaosong
    First, Phillip N.
    Conrad, Edward H.
    Li, Xuebin
    Li, Tianbo
    Sprinkle, Michael
    Hass, Joanna
    Sadowski, Marcin L.
    Potemski, Marek
    Martinez, Gerard
    [J]. SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) : 92 - 100
  • [35] Shot noise in graphene
    DiCarlo, L.
    Williams, J. R.
    Zhang, Yiming
    McClure, D. T.
    Marcus, C. M.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (15)
  • [36] Quantum and transport conductivities in monolayer graphene
    Dong, H. M.
    Xu, W.
    Zeng, Z.
    Lu, T. C.
    Peeters, F. M.
    [J]. PHYSICAL REVIEW B, 2008, 77 (23)
  • [37] Graphene field-effect devices
    Echtermeyer, T. J.
    Lemme, M. C.
    Bolten, J.
    Baus, M.
    Ramsteiner, M.
    Kurz, H.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 148 (1) : 19 - 26
  • [38] Structures and electronic properties of surface/edges of nanodiamond and nanographite
    Enoki, Toshiaki
    Kobayashi, Yousuke
    Katsuyama, Chika
    Osipov, Vladimir Yu.
    Baidakova, Marina V.
    Takai, Kazuyuki
    Fukui, Ken-ichi
    Vul, Alexander Ya.
    [J]. DIAMOND AND RELATED MATERIALS, 2007, 16 (12) : 2029 - 2034
  • [39] Electronic structures of graphene edges and nanographene
    Enoki, Toshiaki
    Kobayashi, Yousuke
    Fukui, Ken-Ichi
    [J]. INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2007, 26 (04) : 609 - 645
  • [40] EVALDSSON M, 2008, ARXIV08054326V1