ATRP under Biologically Relevant Conditions: Grafting from a Protein

被引:222
作者
Averick, Saadyah [1 ]
Simakova, Antonina [1 ]
Park, Sangwoo [1 ]
Konkolewicz, Dominik [1 ]
Magenau, Andrew J. D. [1 ]
Mehl, Ryan A. [2 ]
Matyjaszewski, Krzysztof [1 ]
机构
[1] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA
[2] Franklin & Marshall Coll, Dept Chem, Lancaster, PA 17604 USA
来源
ACS MACRO LETTERS | 2012年 / 1卷 / 01期
关键词
TRANSFER RADICAL POLYMERIZATION; POLYMERS; AMPHIPHILES; PEGYLATION; INITIATOR; FEATURES; LIGAND; GROWTH;
D O I
10.1021/mz200020c
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Atom transfer radical polymerization (ATRP) methods were developed in water-based media, to grow polymers from proteins under biologically relevant conditions. These conditions gave good control over the resulting polymer, while still preserving the native structure. Several reaction parameters, such as ligand structure, halide species, and initiation mode were optimized in water and pas buffer to yield well-defined polymers grown from bovine serum albumin (BSA), functionalized with cleavable ATRP initiators (I). The CuCl complex with ligand 2,2'-bipyridyne (bpy) provides the best conditions for the polymerization of oligo(ethylene oxide) Methacrylate (OEOMA) in water at 30 degrees C under normal. ATRP conditions (I/CuCl/CuCl2/bpy = 1/1/9/22), while the CuBr/bpy complex gave better performance in PBS. Activators generated by electron transfer (AGET) ATRP gave well-controlled polymerization of OEOMA at 30 degrees C with the ligand tris(2-pyridylmethyl)amine (TPMA), (I/CuBr2/TpMA = 1/10/11). The AGET ATRP reactions required slow feeding of a very small amount of ascorbic acid into the aqueous reaction medium or buffer. The reaction conditions developed were used to create a smart, thermoresponsive, protein-polymer, hybrid.
引用
收藏
页码:6 / 10
页数:5
相关论文
共 37 条
[1]   Protein precipitation and denaturation by dimethyl sulfoxide [J].
Arakawa, Tsutomu ;
Kita, Yoshiko ;
Timasheff, Serge N. .
BIOPHYSICAL CHEMISTRY, 2007, 131 (1-3) :62-70
[2]   Covalently incorporated protein-nanogels using AGET ATRP in an inverse miniemulsion [J].
Averick, Saadyah E. ;
Magenau, Andrew J. D. ;
Simakova, Antonina ;
Woodman, Bradley F. ;
Seong, Andrew ;
Mehl, Ryan A. ;
Matyjaszewski, Krzysztof .
POLYMER CHEMISTRY, 2011, 2 (07) :1476-1478
[3]   Streptavidin as a macroinitiator for polymerization: In situ protein-polymer conjugate formation [J].
Bontempo, D ;
Maynard, HD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (18) :6508-6509
[4]   An overview of protein-polymer particles [J].
Boyer, Cyrille ;
Huang, Xin ;
Whittaker, Michael R. ;
Bulmus, Volga ;
Davis, Thomas P. .
SOFT MATTER, 2011, 7 (05) :1599-1614
[5]   Bioapplications of RAFT Polymerization [J].
Boyer, Cyrille ;
Bulmus, Volga ;
Davis, Thomas P. ;
Ladmiral, Vincent ;
Liu, Jingquan ;
Perrier, Sebastien .
CHEMICAL REVIEWS, 2009, 109 (11) :5402-5436
[6]   Controlled/living radical polymerization: Features, developments, and perspectives [J].
Braunecker, Wade A. ;
Matyjaszewski, Krzysztof .
PROGRESS IN POLYMER SCIENCE, 2007, 32 (01) :93-146
[7]   Thermodynamic Components of the Atom Transfer Radical Polymerization Equilibrium: Quantifying Solvent Effects [J].
Braunecker, Wade A. ;
Tsarevsky, Nicolay V. ;
Gennaro, Armando ;
Matyjaszewski, Krzysztof .
MACROMOLECULES, 2009, 42 (17) :6348-6360
[8]   Emerging synthetic approaches for protein-polymer conjugations [J].
Broyer, Rebecca M. ;
Grover, Gregory N. ;
Maynard, Heather D. .
CHEMICAL COMMUNICATIONS, 2011, 47 (08) :2212-2226
[9]   Functional polymers by atom transfer radical polymerization [J].
Coessens, V ;
Pintauer, T ;
Matyjaszewski, K .
PROGRESS IN POLYMER SCIENCE, 2001, 26 (03) :337-377
[10]  
Davey MW, 2000, J SCI FOOD AGR, V80, P825, DOI 10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO