Structural evolution of the protein kinase-like superfamily

被引:215
作者
Scheeff, ED [1 ]
Bourne, PE
机构
[1] Univ Calif San Diego, San Diego Supercomp Ctr, San Diego, CA 92103 USA
[2] Univ Calif San Diego, Dept Pharmacol, San Diego, CA USA
关键词
D O I
10.1371/journal.pcbi.0010049
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositicle-3 kinase family than to the protein kinase family. The two most divergent families, a-kinases and phosphaticlylinositol phosphate kinases (PIPKs), appear to have distinct evolutionary histories. While the PIPKs probably have an evolutionary relationship with the rest of the kinase superfamily, the relationship appears to be very distant (and perhaps indirect). Conversely, the alpha-kinases appear to be an exception to the scenario of early divergence for the atypical kinases: they apparently arose relatively recently in eukaryotes. We present possible scenarios for the derivation of the alpha-kinases from an extant kinase fold.
引用
收藏
页码:359 / 381
页数:23
相关论文
共 110 条
[1]   PI 3-kinase related kinases: 'big' players in stress-induced signaling pathways [J].
Abraham, RT .
DNA REPAIR, 2004, 3 (8-9) :883-887
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: Implications for protein evolution in the RNA world [J].
Aravind, L ;
Anantharaman, V ;
Koonin, EV .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 48 (01) :1-14
[4]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[5]   The structure of phosphorylated GSK-3β complexed with a peptide, FRATtide, that inhibits β-catenin phosphorylation [J].
Bax, B ;
Carter, PS ;
Lewis, C ;
Guy, AR ;
Bridges, A ;
Tanner, R ;
Pettman, G ;
Mannix, C ;
Culbert, AA ;
Brown, MJB ;
Smith, DG ;
Reith, AD .
STRUCTURE, 2001, 9 (12) :1143-1152
[6]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[7]   High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site [J].
Biondi, RM ;
Komander, D ;
Thomas, CC ;
Lizcano, JM ;
Deak, M ;
Alessi, DR ;
van Aalten, DMF .
EMBO JOURNAL, 2002, 21 (16) :4219-4228
[8]   The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 [J].
Boeckmann, B ;
Bairoch, A ;
Apweiler, R ;
Blatter, MC ;
Estreicher, A ;
Gasteiger, E ;
Martin, MJ ;
Michoud, K ;
O'Donovan, C ;
Phan, I ;
Pilbout, S ;
Schneider, M .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :365-370
[9]   PHOSPHOTRANSFERASE AND SUBSTRATE BINDING MECHANISM OF THE CAMP-DEPENDENT PROTEIN-KINASE CATALYTIC SUBUNIT FROM PORCINE HEART AS DEDUCED FROM THE 2.0 ANGSTROM STRUCTURE OF THE COMPLEX WITH MN2+ ADENYLYL IMIDODIPHOSPHATE AND INHIBITOR PEPTIDE PKI(5-24) [J].
BOSSEMEYER, D ;
ENGH, RA ;
KINZEL, V ;
PONSTINGL, H ;
HUBER, R .
EMBO JOURNAL, 1993, 12 (03) :849-859
[10]   The ASTRAL compendium for protein structure and sequence analysis [J].
Brenner, SE ;
Koehl, P ;
Levitt, R .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :254-256