Molecular cloning and functional characterization of β-N-acetylglucosaminidase genes from Sf9 cells

被引:31
作者
Aumiller, Jared J. [1 ]
Hollister, Jason R. [1 ]
Jarvis, Donald L. [1 ]
机构
[1] Univ Wyoming, Dept Mol Biol, Laramie, WY 82071 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
insect cells; baculovirus; glycoproteins; beta-N-acetylglucosaminidase;
D O I
10.1016/j.pep.2005.11.026
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Sf9, a cell line derived from the lepidopteran insect, Spodoptera frugiperda, is widely used as a host for recombinant glycoprotein expression and purification by baculovirus vectors. Previous studies have shown that this cell line has one or more beta-N-acetylglucosaminidase activities that may be involved in the degradation and/or processing of N-glycoprotein glycans. However, these enzymes and their functions remain poorly characterized. Therefore, the goal of this study was to isolate beta-N-acetylglucosaminidase genes from Sf9 cells, over-express the gene products, and characterize their enzymatic activities. A degenerate PCR approach yielded three Sf9 cDNAs, which appeared to encode two distinct beta-N-acetylglucosaminidases, according to bioinformatic analyses. Baculovirus-mediated expression of these two cDNA products induced membrane-associated beta-N-acetylglucosaminidase activities in Sf9 cells, which cleaved terminal N-acetylglucosamine residues from the alpha-3 and -6 branches of a biantennary N-glycan substrate with acidic pH optima and completely hydrolyzed chitotriose to its constituent N-acetylglucosamine monomers. GFP-tagged forms of both enzymes exhibited punctate cytoplasmic fluorescence, which did not overlap with either lysosomal or Golgi-specific dyes. Together, these results indicated that the two new Sf9 genes identified in this study encode broad-spectrum beta-N-acetylglucosaminidases that appear to have unusual intracellular distributions. Their relative lack of substrate specificity and acidic pH optima are consistent with a functional role for these enzymes in glycoprotein glycan and chitin degradation, but not with a role in N-glycoprotein glycan processing. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:571 / 590
页数:20
相关论文
共 56 条
[1]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[2]   INSECT CELLS CONTAIN AN UNUSUAL, MEMBRANE-BOUND BETA-N-ACETYLGLUCOSAMINIDASE PROBABLY INVOLVED IN THE PROCESSING OF PROTEIN N-GLYCANS [J].
ALTMANN, F ;
SCHWIHLA, H ;
STAUDACHER, E ;
GLOSSL, J ;
MARZ, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (29) :17344-17349
[3]   PROCESSING OF ASPARAGINE-LINKED OLIGOSACCHARIDES IN INSECT CELLS - N-ACETYLGLUCOSAMINYLTRANSFERASE I AND II ACTIVITIES IN CULTURED LEPIDOPTERAN CELLS [J].
ALTMANN, F ;
KORNFELD, G ;
DALIK, T ;
STAUDACHER, E ;
GLOSSL, J .
GLYCOBIOLOGY, 1993, 3 (06) :619-625
[4]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[5]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[7]   CLONING AND SEQUENCE-ANALYSIS OF A CDNA-ENCODING THE BETA-SUBUNIT OF MOUSE BETA-HEXOSAMINIDASE [J].
BAPAT, B ;
ETHIER, M ;
NEOTE, K ;
MAHURAN, D ;
GRAVEL, RA .
FEBS LETTERS, 1988, 237 (1-2) :191-195
[8]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[9]   THE PRIMARY STRUCTURE OF AN ENTAMOEBA-HISTOLYTICA BETA-HEXOSAMINIDASE-A SUBUNIT [J].
BEANAN, MJ ;
BAILEY, GB .
JOURNAL OF EUKARYOTIC MICROBIOLOGY, 1995, 42 (05) :632-636
[10]   CLONING AND SEQUENCE-ANALYSIS OF A CDNA-ENCODING THE ALPHA-SUBUNIT OF MOUSE BETA-N-ACETYLHEXOSAMINIDASE AND COMPARISON WITH THE HUMAN ENZYME [J].
BECCARI, T ;
HOADE, J ;
ORLACCHIO, A ;
STIRLING, JL .
BIOCHEMICAL JOURNAL, 1992, 285 :593-596