Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155

被引:234
作者
Chung, Kwan-Ho
Hart, Christopher C.
Al-Bassam, Sarmad
Avery, Adam
Taylor, Jennifer
Patel, Paresh D.
Vojtek, Anne B.
Turner, David L. [1 ]
机构
[1] Univ Michigan, Mol & Behav Neurosci Inst, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Program Neurosci, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Psychiat, Ann Arbor, MI 48109 USA
关键词
D O I
10.1093/nar/gkl143
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vector-based RNA interference (RNAi) has emerged as a valuable tool for analysis of gene function. We have developed new RNA polymerase II expression vectors for RNAi, designated SIBR vectors, based upon the non-coding RNA BIC. BIC contains the miR-155 microRNA (miRNA) precursor, and we find that expression of a short region of the third exon of mouse BIC is sufficient to produce miR-155 in mammalian cells. The SIBR vectors use a modified miR-155 precursor stem-loop and flanking BIC sequences to express synthetic miRNAs complementary to target RNAs. Like RNA polymerase III driven short hairpin RNA vectors, the SIBR vectors efficiently reduce target mRNA and protein expression. The synthetic miRNAs can be expressed from an intron, allowing coexpression of a marker or other protein with the miRNAs. In addition, intronic expression of a synthetic miRNA from a two intron vector enhances RNAi. A SIBR vector can express two different miRNAs from a single transcript for effective inhibition of two different target mRNAs. Furthermore, at least eight tandem copies of a synthetic miRNA can be expressed in a polycistronic transcript to increase the inhibition of a target RNA. The SIBR vectors are flexible tools for a variety of RNAi applications.
引用
收藏
页数:14
相关论文
共 62 条
  • [21] CONVERSION OF XENOPUS ECTODERM INTO NEURONS BY NEUROD, A BASIC HELIX-LOOP-HELIX PROTEIN
    LEE, JE
    HOLLENBERG, SM
    SNIDER, L
    TURNER, DL
    LIPNICK, N
    WEINTRAUB, H
    [J]. SCIENCE, 1995, 268 (5212) : 836 - 844
  • [22] An extensive class of small RNAs in Caenorhabditis elegans
    Lee, RC
    Ambros, V
    [J]. SCIENCE, 2001, 294 (5543) : 862 - 864
  • [23] The nuclear RNase III Drosha initiates microRNA processing
    Lee, Y
    Ahn, C
    Han, JJ
    Choi, H
    Kim, J
    Yim, J
    Lee, J
    Provost, P
    Rådmark, O
    Kim, S
    Kim, VN
    [J]. NATURE, 2003, 425 (6956) : 415 - 419
  • [24] MicroRNA genes are transcribed by RNA polymerase II
    Lee, Y
    Kim, M
    Han, JJ
    Yeom, KH
    Lee, S
    Baek, SH
    Kim, VN
    [J]. EMBO JOURNAL, 2004, 23 (20) : 4051 - 4060
  • [25] MicroRNA maturation: stepwise processing and subcellular localization
    Lee, Y
    Jeon, K
    Lee, JT
    Kim, S
    Kim, VN
    [J]. EMBO JOURNAL, 2002, 21 (17) : 4663 - 4670
  • [26] Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA
    Llave, C
    Xie, ZX
    Kasschau, KD
    Carrington, JC
    [J]. SCIENCE, 2002, 297 (5589) : 2053 - 2056
  • [27] Electroporation and RNA interference in the rodent retina in vivo and in vitro
    Matsuda, T
    Cepko, CL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (01) : 16 - 22
  • [28] Gene silencing in mammals by small interfering RNAs
    McManus, MT
    Sharp, PA
    [J]. NATURE REVIEWS GENETICS, 2002, 3 (10) : 737 - 747
  • [29] MiRNAs on the move: miRNA biogenesis and the RNAi machinery
    Murchison, EP
    Hannon, GJ
    [J]. CURRENT OPINION IN CELL BIOLOGY, 2004, 16 (03) : 223 - 229
  • [30] The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation
    Olsen, PH
    Ambros, V
    [J]. DEVELOPMENTAL BIOLOGY, 1999, 216 (02) : 671 - 680