Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf"

被引:91
作者
Trevisan, Roberto [1 ]
Rodenas, Pau [1 ]
Gonzalez-Pedro, Victoria [1 ]
Sima, Cornelia [1 ,2 ,3 ]
Sanchez, Rafael S. [1 ]
Barea, Eva M. [1 ]
Mora-Sero, Ivan [1 ]
Fabregat-Santiago, Francisco [1 ]
Gimenez, Sixto [1 ]
机构
[1] Univ Jaume 1, Photovolta & Optoelect Devices Grp, Dept Fis, Castellon de La Plana 12071, Spain
[2] Natl Inst Lasers Plasma & Radiat Phys, Bucharest 077125, Romania
[3] Univ Bucharest, Fac Phys, Bucharest 077125, Romania
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2013年 / 4卷 / 01期
关键词
CHEMICAL CAPACITANCE; TIO2; NANOSTRUCTURES; WATER; ARRAYS; SEMICONDUCTORS; EFFICIENCY;
D O I
10.1021/jz301890m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen generation by using quantum dot (QD) based heterostructures has emerged as a promising strategy to develop artificial photosynthesis devices. In the present study, we sensitize mesoporous TiO2 electrodes with in-situ-deposited PbS/CdS QDs, aiming at harvesting light in both the visible and the near-infrared for hydrogen generation. This heterostructure exhibits a remarkable photocurrent of 6 mA.cm(-2), leading to 60 mL.cm(-2).day(-1) hydrogen generation. Most importantly, confirmation of the contribution of infrared photons to H-2 generation was provided by the incident-photon-to-current-efficiency (IPCE), and the integrated current was in excellent agreement with that obtained through cyclic voltammetry. The main electronic processes (accumulation, transport, and recombination) were identified by impedance spectroscopy, which appears as a simple and reliable methodology to evaluate the limiting factors of these photoelectrodes. On the basis of this TiO2/PbS/CdS heterostructrure, a "quasi-artificial leaf' has been developed, which has proven to produce hydrogen under simulated solar illumination at (4.30 +/- 0.25) mL.cm(-2).day(-1).
引用
收藏
页码:141 / 146
页数:6
相关论文
共 40 条
[1]  
Bisquert J, 2002, J PHYS CHEM B, V106, P325, DOI 10.1021/jp01194lg
[2]   Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells [J].
Bisquert, J ;
Cahen, D ;
Hodes, G ;
Rühle, S ;
Zaban, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (24) :8106-8118
[3]   Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells [J].
Bisquert, J .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (24) :5360-5364
[4]   Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes [J].
Braga, Antonio ;
Gimenez, Sixto ;
Concina, Isabella ;
Vomiero, Alberto ;
Mora-Sero, Ivan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (05) :454-460
[5]   Quantum Dot Monolayer Sensitized ZnO Nanowire-Array Photoelectrodes: True Efficiency for Water Splitting [J].
Chen, Hao Ming ;
Chen, Chih Kai ;
Chang, Yu-Chuan ;
Tsai, Chi-Wen ;
Liu, Ru-Shi ;
Hu, Shu-Fen ;
Chang, Wen-Sheng ;
Chen, Kuei-Hsien .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (34) :5966-5969
[6]   Array of CdSe QD-Sensitized ZnO Nanorods Serves as Photoanode for Water Splitting [J].
Chouhan, N. ;
Yeh, C. L. ;
Hu, S. F. ;
Huang, J. H. ;
Tsai, C. W. ;
Liu, R. S. ;
Chang, W. S. ;
Chen, K. H. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) :B1430-B1433
[7]   Solar Energy Supply and Storage for the Legacy and Non legacy Worlds [J].
Cook, Timothy R. ;
Dogutan, Dilek K. ;
Reece, Steven Y. ;
Surendranath, Yogesh ;
Teets, Thomas S. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2010, 110 (11) :6474-6502
[8]   Solar energy conversion [J].
Crabtree, George W. ;
Lewis, Nathan S. .
PHYSICS TODAY, 2007, 60 (03) :37-42
[9]   Chemical capacitance of nanoporous-nanocrystalline TiO2 in a room temperature ionic liquid [J].
Fabregat-Santiago, F ;
Randriamahazaka, H ;
Zaban, A ;
Garcia-Cañadas, J ;
Garcia-Belmonte, G ;
Bisquert, J .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (15) :1827-1833
[10]   Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy [J].
Fabregat-Santiago, Francisco ;
Garcia-Belmonte, Germa ;
Mora-Sero, Ivan ;
Bisquert, Juan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (20) :9083-9118