Deriving fractional Fokker-Planck equations from a generalised master equation

被引:264
作者
Metzler, R [1 ]
Barkai, E
Klafter, J
机构
[1] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
[3] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA
来源
EUROPHYSICS LETTERS | 1999年 / 46卷 / 04期
关键词
D O I
10.1209/epl/i1999-00279-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalised master equation is constructed from a non-homogeneous random walk scheme. It is shown how fractional Fokker-Planck equations for the description of anomalous diffusion in external fields, recently proposed in the literature, can be derived from this framework. Long-tailed waiting time distributions which cause slowly decaying memory effects, are demonstrated to give rise to a time-fractional Fokker-Planck equation that describes systems close to thermal equilibrium. An extension to include also Levy flights leads to a generalised Laplacian in the corresponding fractional Fokker-Planck equation.
引用
收藏
页码:431 / 436
页数:6
相关论文
共 23 条
[1]  
[Anonymous], PHYS REP
[2]   Generalized Einstein relation: A stochastic modeling approach [J].
Barkai, E ;
Fleurov, VN .
PHYSICAL REVIEW E, 1998, 58 (02) :1296-1310
[3]   INTERMEDIATES AND BARRIER CROSSING IN A RANDOM ENERGY-MODEL (WITH APPLICATIONS TO PROTEIN FOLDING) [J].
BRYNGELSON, JD ;
WOLYNES, PG .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (19) :6902-6915
[4]   LANGEVIN-EQUATIONS FOR CONTINUOUS-TIME LEVY FLIGHTS [J].
FOGEDBY, HC .
PHYSICAL REVIEW E, 1994, 50 (02) :1657-1660
[5]   LEVY FLIGHTS IN RANDOM-ENVIRONMENTS [J].
FOGEDBY, HC .
PHYSICAL REVIEW LETTERS, 1994, 73 (19) :2517-2520
[6]   Levy flights in quenched random force fields [J].
Fogedby, HC .
PHYSICAL REVIEW E, 1998, 58 (02) :1690-1712
[7]  
Gnedenko BV., 1954, LIMIT DISTRIBUTIONS
[8]  
Hughes B. D., 1995, Random Walks and Random Environments, V1
[9]   Levy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions [J].
Jespersen, S ;
Metzler, R ;
Fogedby, HC .
PHYSICAL REVIEW E, 1999, 59 (03) :2736-2745
[10]  
Keith Oldham., 1974, FRACTIONAL CALCULUS