Deriving fractional Fokker-Planck equations from a generalised master equation

被引:264
作者
Metzler, R [1 ]
Barkai, E
Klafter, J
机构
[1] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
[3] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA
来源
EUROPHYSICS LETTERS | 1999年 / 46卷 / 04期
关键词
D O I
10.1209/epl/i1999-00279-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalised master equation is constructed from a non-homogeneous random walk scheme. It is shown how fractional Fokker-Planck equations for the description of anomalous diffusion in external fields, recently proposed in the literature, can be derived from this framework. Long-tailed waiting time distributions which cause slowly decaying memory effects, are demonstrated to give rise to a time-fractional Fokker-Planck equation that describes systems close to thermal equilibrium. An extension to include also Levy flights leads to a generalised Laplacian in the corresponding fractional Fokker-Planck equation.
引用
收藏
页码:431 / 436
页数:6
相关论文
共 23 条
[11]  
Kenkre VM., 1973, J STAT PHYS, V9, P45, DOI [DOI 10.1007/BF01016796, 10.1007/BF01016796]
[12]   STOCHASTIC PATHWAY TO ANOMALOUS DIFFUSION [J].
KLAFTER, J ;
BLUMEN, A ;
SHLESINGER, MF .
PHYSICAL REVIEW A, 1987, 35 (07) :3081-3085
[13]  
LEUY P, 1965, PROCESSUS STOCHASTIQ
[14]  
Levy P, 1954, THEORIE ADDITION VAR, VSecond
[15]   Anomalous transport in external fields: Continuous time random walks and fractional diffusion equations extended [J].
Metzler, R ;
Klafter, J ;
Sokolov, IM .
PHYSICAL REVIEW E, 1998, 58 (02) :1621-1633
[16]  
METZLER R, UNPUB PHYS REV LETT
[17]  
Oppenheim I., 1977, STOCHASTIC PROCESSES
[18]   Non-Markovian configurational diffusion and reaction coordinates for protein folding [J].
Plotkin, SS ;
Wolynes, PG .
PHYSICAL REVIEW LETTERS, 1998, 80 (22) :5015-5018
[19]  
RIKSEN H, 1989, FOKKER PLANCK EQUATI
[20]  
Samko S., 1993, Fractional Integral and Derivatives: Theory and Applications, P1