Fractional Langevin equation

被引:386
作者
Lutz, E [1 ]
机构
[1] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 05期
关键词
D O I
10.1103/PhysRevE.64.051106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate fractional Brownian motion with a microscopic random-matrix model and introduce a fractional Langevin equation. We use the latter to study both subdiffusion and superdiffusion of a free particle coupled to a fractal heat bath. We further compare fractional Brownian motion with the fractal time process. The respective mean-square displacements of these two forms of anomalous diffusion exhibit the same power-law behavior. Here we show that their lowest moments are actually all identical, except the second moment of the velocity. This provides a simple criterion that enable us to distinguish these two non-Markovian processes.
引用
收藏
页数:4
相关论文
共 43 条
[1]   Fractional Brownian motion as a nonstationary process: An alternative paradigm for DNA sequences [J].
Allegrini, P ;
Buiatti, M ;
Grigolini, P ;
West, BJ .
PHYSICAL REVIEW E, 1998, 57 (04) :4558-4567
[2]   Subdiffusion and anomalous local viscoelasticity in actin networks (vol 77, pg 4470, 1996) [J].
Amblard, F ;
Maggs, AC ;
Yurke, B ;
Pargellis, AN ;
Leibler, S .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :1136-1136
[3]   Subdiffusion and anomalous local viscoelasticity in actin networks [J].
Amblard, F ;
Maggs, AC ;
Yurke, B ;
Pargellis, AN ;
Leibler, S .
PHYSICAL REVIEW LETTERS, 1996, 77 (21) :4470-4473
[4]   ANOMALOUS DIFFUSION IN ONE DIMENSION [J].
BALAKRISHNAN, V .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1985, 132 (2-3) :569-580
[5]   Subdiffusion and anomalous local viscoelasticity in actin networks - Comment [J].
Barkai, E ;
Klafter, J .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :1134-1134
[6]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[7]   Fractional Kramers equation [J].
Barkai, E ;
Silbey, RJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3866-3874
[8]   Hole response time and the experimental test of the Einstein relation [J].
Bruggemann, R .
PHYSICAL REVIEW B, 1997, 56 (11) :6408-6411
[9]  
CALZETTA E, QUANTPH0011097
[10]   Enhanced diffusion in active intracellular transport [J].
Caspi, A ;
Granek, R ;
Elbaum, M .
PHYSICAL REVIEW LETTERS, 2000, 85 (26) :5655-5658