Weak ergodicity breaking with deterministic dynamics

被引:42
作者
Bel, G [1 ]
Barkai, E [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
来源
EUROPHYSICS LETTERS | 2006年 / 74卷 / 01期
关键词
D O I
10.1209/epl/i2005-10501-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The concept of weak ergodicity breaking is defined and studied in the context of deterministic dynamics. We show that weak ergodicity breaking describes a system whose dynamics is governed by a nonlinear map which generates subdiffusion deterministically. In the non-ergodic phase a non-trivial distribution of the fraction of occupation times is obtained. The visitation fraction remains uniform even in the non-ergodic phase. In this sense the non-ergodicity is quantified, leading to a statistical mechanical description of the system even though it is not ergodic.
引用
收藏
页码:15 / 21
页数:7
相关论文
共 21 条
[1]   Ensemble averages and nonextensivity at the edge of chaos of one-dimensional maps -: art. no. 020601 [J].
Añaños, GFJ ;
Tsallis, C .
PHYSICAL REVIEW LETTERS, 2004, 93 (02) :020601-1
[2]   Sensitivity to initial conditions at bifurcations in one-dimensional nonlinear maps: Rigorous nonextensive solutions [J].
Baldovin, F ;
Robledo, A .
EUROPHYSICS LETTERS, 2002, 60 (04) :518-524
[3]   Crossover from dispersive to regular transport in biased maps [J].
Barkai, E ;
Klafter, J .
PHYSICAL REVIEW LETTERS, 1997, 79 (12) :2245-2248
[4]   Aging in subdiffusion generated by a deterministic dynamical system [J].
Barkai, E .
PHYSICAL REVIEW LETTERS, 2003, 90 (10) :4
[5]   Weak ergodicity breaking in the continuous-time random walk [J].
Bel, G ;
Barkai, E .
PHYSICAL REVIEW LETTERS, 2005, 94 (24)
[6]   INFLUENCE OF THE ENVIRONMENT ON ANOMALOUS DIFFUSION [J].
BETTIN, R ;
MANNELLA, R ;
WEST, BJ ;
GRIGOLINI, P .
PHYSICAL REVIEW E, 1995, 51 (01) :212-219
[7]  
BOUCHAUD JP, 1992, J PHYS I, V2, P1705, DOI 10.1051/jp1:1992238
[8]  
DORFMAN JR, 1999, CAMBRIDGE LECT NOTES
[9]   ANOMALOUS DIFFUSION IN INTERMITTENT CHAOTIC SYSTEMS [J].
GEISEL, T ;
THOMAE, S .
PHYSICAL REVIEW LETTERS, 1984, 52 (22) :1936-1939
[10]  
GEISEL T, 1985, PHYS REV LETT, V54, P616, DOI 10.1103/PhysRevLett.54.616