Weak ergodicity breaking with deterministic dynamics

被引:42
作者
Bel, G [1 ]
Barkai, E [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
来源
EUROPHYSICS LETTERS | 2006年 / 74卷 / 01期
关键词
D O I
10.1209/epl/i2005-10501-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The concept of weak ergodicity breaking is defined and studied in the context of deterministic dynamics. We show that weak ergodicity breaking describes a system whose dynamics is governed by a nonlinear map which generates subdiffusion deterministically. In the non-ergodic phase a non-trivial distribution of the fraction of occupation times is obtained. The visitation fraction remains uniform even in the non-ergodic phase. In this sense the non-ergodicity is quantified, leading to a statistical mechanical description of the system even though it is not ergodic.
引用
收藏
页码:15 / 21
页数:7
相关论文
共 21 条
[11]   Temporal scaling at feigenbaum points and nonextensive thermodynamics [J].
Grassberger, P .
PHYSICAL REVIEW LETTERS, 2005, 95 (14)
[12]   Sporadic randomness: The transition from the stationary to the nonstationary condition [J].
Ignaccolo, M ;
Grigolini, P ;
Rosa, A .
PHYSICAL REVIEW E, 2001, 64 (02) :11-262111
[13]   Understanding anomalous transport in intermittent maps: From continuous-time random walks to fractals [J].
Korabel, N ;
Chechkin, AV ;
Klages, R ;
Sokolov, IM ;
Gonchar, VY .
EUROPHYSICS LETTERS, 2005, 70 (01) :63-69
[14]  
Lamperti J., 1958, Trans. Am. Math. Soc., V88, P380, DOI [DOI 10.2307/1993222, 10.2307/1993222, DOI 10.1090/S0002-9947-1958-0094863-X]
[15]   INTERMITTENCY, SELF-SIMILARITY AND 1-F SPECTRUM IN DISSIPATIVE DYNAMICAL-SYSTEMS [J].
MANNEVILLE, P .
JOURNAL DE PHYSIQUE, 1980, 41 (11) :1235-1243
[16]   INTERMITTENT TRANSITION TO TURBULENCE IN DISSIPATIVE DYNAMICAL-SYSTEMS [J].
POMEAU, Y ;
MANNEVILLE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 74 (02) :189-197
[17]   Suppression of chaotic diffusion by quenched disorder [J].
Radons, G .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4748-4751
[18]   Aging at the edge of chaos: glassy dynamics and nonextensive statistics [J].
Robledo, A .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (1-2) :104-111
[19]   Chaos, fractional kinetics, and anomalous transport [J].
Zaslavsky, GM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 371 (06) :461-580
[20]   Chaotic dynamics and the origin of statistical laws [J].
Zaslavsky, GM .
PHYSICS TODAY, 1999, 52 (08) :39-45