Ensemble averages and nonextensivity at the edge of chaos of one-dimensional maps -: art. no. 020601

被引:53
作者
Añaños, GFJ
Tsallis, C
机构
[1] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[2] Univ Nacl Trujillo, Dept Fis, Trujillo, Peru
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
D O I
10.1103/PhysRevLett.93.020601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Ensemble averages of the sensitivity to initial conditions xi(t) and the entropy production per unit of time of a new family of one-dimensional dissipative maps, x(t+1)=1-ae(-1/\x t\ z)(z>0), and of the known logisticlike maps, x(t+1)=1-a\x(t)\(z)(z>1), are numerically studied, both for strong (Lyapunov exponent lambda(1)>0) and weak (chaos threshold, i.e., lambda(1)=0) chaotic cases. In all cases we verify the following: (i) both <ln(q)xi> [ln(q)xequivalent to(x(1-q)-1)/(1-q); ln(1)x=lnx] and <S-q> [S(q)equivalent to(1-Sigma(i)p(i)(q))/(q-1); S-1=-Sigma(i)p(i)lnp(i)] linearly increase with time for (and only for) a special value of q, q(sen)(av), and (ii) the slope of <ln(q)xi> and that of <S-q> coincide, thus interestingly extending the well known Pesin theorem. For strong chaos, q(sen)(av)=1, whereas at the edge of chaos q(sen)(av)(z)<1.
引用
收藏
页码:020601 / 1
页数:4
相关论文
共 23 条
[1]   Nonextensive Pesin identity: Exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map [J].
Baldovin, F ;
Robledo, A .
PHYSICAL REVIEW E, 2004, 69 (04) :4-1
[2]  
Baldovin F, 2002, PHYS REV E, V66, DOI [10.1103/PhysRevE.66.045104, 10.1103/PhysrevE.66.045104]
[3]   Dynamical foundations of nonextensive statistical mechanics [J].
Beck, C .
PHYSICAL REVIEW LETTERS, 2001, 87 (18) :180601-1
[4]   Measuring nonextensitivity parameters in a turbulent Couette-Taylor flow [J].
Beck, C ;
Lewis, GS ;
Swinney, HL .
PHYSICAL REVIEW E, 2001, 63 (03) :353031-353034
[5]   Nonequilibrium probabilistic dynamics of the logistic map at the edge of chaos -: art. no. 254103 [J].
Borges, EP ;
Tsallis, C ;
Añaños, GFJ ;
de Oliveira, PMC .
PHYSICAL REVIEW LETTERS, 2002, 89 (25)
[6]   Metastable states in a class of long-range Hamiltonian systems [J].
Campa, A ;
Giansanti, A ;
Moroni, D .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 305 (1-2) :137-143
[7]   Power-law sensitivity to initial conditions within a logisticlike family of maps: Fractality and nonextensivity [J].
Costa, UMS ;
Lyra, ML ;
Plastino, AR ;
Tsallis, C .
PHYSICAL REVIEW E, 1997, 56 (01) :245-250
[8]  
Cvitanovic P., 1984, UNIVERSALITY CHAOS, P1
[9]  
Gell-Mann M., 2004, Nonextensive Entropy: Interdisciplinary Applications
[10]  
Hilborn R.C., 1994, CHAOS NONLINEAR DYNA