RNA-guided editing of bacterial genomes using CRISPR-Cas systems

被引:1792
作者
Jiang, Wenyan [1 ]
Bikard, David [1 ]
Cox, David [2 ,3 ,4 ]
Zhang, Feng [2 ,3 ,4 ]
Marraffini, Luciano A. [1 ]
机构
[1] Rockefeller Univ, Bacteriol Lab, New York, NY 10021 USA
[2] Broad Inst MIT & Harvard, Cambridge, MA USA
[3] MIT, Dept Brain & Cognit Sci, McGovern Inst Brain Res, Cambridge, MA 02139 USA
[4] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
ESCHERICHIA-COLI; IMMUNE-SYSTEM; STREPTOCOCCUS-THERMOPHILUS; SEED SEQUENCE; DNA CLEAVAGE; IN-VIVO; ENDONUCLEASE; PROTEIN; RECOMBINATION; INTERFERENCE;
D O I
10.1038/nbt.2508
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Here we use the clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 endonuclease complexed with dual-RNAs to introduce precise mutations in the genomes of Streptococcus pneumoniae and Escherichia coli. The approach relies on dual-RNA:Cas9-directed cleavage at the targeted genomic site to kill unmutated cells and circumvents the need for selectable markers or counter-selection systems. We reprogram dual-RNA:Cas9 specificity by changing the sequence of short CRISPR RNA (crRNA) to make single- and multinucleotide changes carried on editing templates. Simultaneous use of two crRNAs enables multiplex mutagenesis. In S. pneumoniae, nearly 100% of cells that were recovered using our approach contained the desired mutation, and in E. coli, 65% that were recovered contained the mutation, when the approach was used in combination with recombineering. We exhaustively analyze dual-RNA:Cas9 target requirements to define the range of targetable sequences and show strategies for editing sites that do not meet these requirements, suggesting the versatility of this technique for bacterial genome engineering.
引用
收藏
页码:233 / 239
页数:7
相关论文
共 40 条
[1]   Allelic replacement in Staphylococcus aureus with inducible counter-selection [J].
Bae, T ;
Schneewind, O .
PLASMID, 2006, 55 (01) :58-63
[2]   RNA-mediated programmable DNA cleavage [J].
Barrangou, Rodolphe .
NATURE BIOTECHNOLOGY, 2012, 30 (09) :836-838
[3]   CRISPR Interference Can Prevent Natural Transformation and Virulence Acquisition during In Vivo Bacterial Infection [J].
Bikard, David ;
Hatoum-Aslan, Asma ;
Mucida, Daniel ;
Marraffini, Luciano A. .
CELL HOST & MICROBE, 2012, 12 (02) :177-186
[4]   TAL Effectors: Customizable Proteins for DNA Targeting [J].
Bogdanove, Adam J. ;
Voytas, Daniel F. .
SCIENCE, 2011, 333 (6051) :1843-1846
[5]   Small CRISPR RNAs guide antiviral defense in prokaryotes [J].
Brouns, Stan J. J. ;
Jore, Matthijs M. ;
Lundgren, Magnus ;
Westra, Edze R. ;
Slijkhuis, Rik J. H. ;
Snijders, Ambrosius P. L. ;
Dickman, Mark J. ;
Makarova, Kira S. ;
Koonin, Eugene V. ;
van der Oost, John .
SCIENCE, 2008, 321 (5891) :960-964
[6]   A Swiss Army Knife of Immunity [J].
Brouns, Stan J. J. .
SCIENCE, 2012, 337 (6096) :808-809
[7]   A CRISPR Approach to Gene Targeting [J].
Carroll, Dana .
MOLECULAR THERAPY, 2012, 20 (09) :1658-1660
[8]   Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes [J].
Carte, Jason ;
Wang, Ruiying ;
Li, Hong ;
Terns, Rebecca M. ;
Terns, Michael P. .
GENES & DEVELOPMENT, 2008, 22 (24) :3489-3496
[9]   Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease [J].
Cho, Seung Woo ;
Kim, Sojung ;
Kim, Jong Min ;
Kim, Jin-Soo .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :230-232
[10]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823