Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation

被引:579
作者
Cornuet, Jean-Marie [1 ,2 ]
Santos, Filipe [2 ]
Beaumont, Mark A. [3 ]
Robert, Christian P. [4 ]
Marin, Jean-Michel [5 ]
Balding, David J. [1 ]
Guillemaud, Thomas [6 ]
Estoup, Arnaud [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Epidemiol & Publ Hlth, London W2 1PG, England
[2] INRA, Ctr Biol & Gest Populat, CS 30016, F-34988 Montferrier Sur Lez, France
[3] Univ Reading Whiteknights, Sch Biol Sci, Reading RG6 6AS, Berks, England
[4] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
[5] Univ Paris 11, Math Lab, Project Select, INRIA Saclay, F-91400 Orsay, France
[6] INRA UNSA CNRS, IBSV, UMR 1301, F-06903 Sophia Antipolis, France
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1093/bioinformatics/btn514
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Genetic data obtained on population samples convey information about their evolutionary history. Inference methods can extract part of this information but they require sophisticated statistical techniques that have been made available to the biologist community (through computer programs) only for simple and standard situations typically involving a small number of samples. We propose here a computer program (DIY ABC) for inference based on approximate Bayesian computation (ABC), in which scenarios can be customized by the user to fit many complex situations involving any number of populations and samples. Such scenarios involve any combination of population divergences, admixtures and population size changes. DIY ABC can be used to compare competing scenarios, estimate parameters for one or more scenarios and compute bias and precision measures for a given scenario and known values of parameters (the current version applies to unlinked microsatellite data). This article describes key methods used in the program and provides its main features. The analysis of one simulated and one real dataset, both with complex evolutionary scenarios, illustrates the main possibilities of DIY ABC.
引用
收藏
页码:2713 / 2719
页数:7
相关论文
共 35 条
[11]   Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis [J].
Estoup, A ;
Jarne, P ;
Cornuet, JM .
MOLECULAR ECOLOGY, 2002, 11 (09) :1591-1604
[12]   Bayesian analysis of an admixture model with mutations and arbitrarily linked markers [J].
Excoffier, L ;
Estoup, A ;
Cornuet, JM .
GENETICS, 2005, 169 (03) :1727-1738
[13]   Statistical evaluation of alternative models of human evolution [J].
Fagundes, Nelson J. R. ;
Ray, Nicolas ;
Beaumont, Mark ;
Neuenschwander, Samuel ;
Salzano, Francisco M. ;
Bonatto, Sandro L. ;
Excoffier, Laurent .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (45) :17614-17619
[14]   Hybrid origins of honeybees from Italy (Apis mellifera ligustica) and Sicily (A-m. sicula) [J].
Franck, P ;
Garnery, L ;
Celebrano, G ;
Solignac, M ;
Cornuet, JM .
MOLECULAR ECOLOGY, 2000, 9 (07) :907-921
[15]   Detection of reduction in population size using data from microsatellite loci [J].
Garza, JC ;
Williamson, EG .
MOLECULAR ECOLOGY, 2001, 10 (02) :305-318
[16]   SIMULATING PROBABILITY-DISTRIBUTIONS IN THE COALESCENT [J].
GRIFFITHS, RC ;
TAVARE, S .
THEORETICAL POPULATION BIOLOGY, 1994, 46 (02) :131-159
[17]   Molecular analysis reveals tighter social regulation of immigration in patrilocal populations than in matrilocal populations [J].
Hamilton, G ;
Stoneking, M ;
Excoffier, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (21) :7476-7480
[18]   Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D-persimilis [J].
Hey, J ;
Nielsen, R .
GENETICS, 2004, 167 (02) :747-760
[19]   msBayes: Pipeline for testing comparative phylogeographic histories using hierarchical approximate Bayesian computation [J].
Hickerson, Michael J. ;
Stahl, Eli ;
Takebayashi, Naoki .
BMC BIOINFORMATICS, 2007, 8 (1)
[20]  
IHAKA R, 1996, J COMPUTATIONAL GRAP, V5, P299, DOI DOI 10.2307/1390807