Sulfur sparing in the yeast proteome in response to sulfur demand

被引:199
作者
Fauchon, M
Lagniel, G
Aude, JC
Lombardia, L
Soularue, P
Petat, C
Marguerie, G
Sentenac, A
Werner, M
Labarre, J
机构
[1] CEA Saclay, Serv Biochim & Genet Mol, F-91191 Gif Sur Yvette, France
[2] CEA Evry, Serv Genom Fonct, F-91057 Evry, France
关键词
D O I
10.1016/S1097-2765(02)00500-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genome-wide studies have recently revealed the unexpected complexity of the genetic response to apparently simple physiological changes. Here, we show that when yeast cells are exposed to Cd2+, most of the sulfur assimilated by the cells is converted into glutathione, a thiol-metabolite essential for detoxification. Cells adapt to this vital metabolite requirement by modifying globally their proteome to reduce the production of abundant sulfur-rich proteins. In particular, some abundant glycolytic enzymes are replaced by sulfur-depleted isozymes. This global change in protein expression allows an overall sulfur amino acid saving of 30%. This proteomic adaptation is essentially regulated at the mRNA level. The main transcriptional activator of the sulfate assimilation pathway, Met4p, plays an essential role in this sulfur-sparing response.
引用
收藏
页码:713 / 723
页数:11
相关论文
共 40 条
[31]   Inhibition of NF-κB binding to DNA by chromium, cadmium, mercury, zinc, and arsenite in vitro:: Evidence of a thiol mechanism [J].
Shumilla, JA ;
Wetterhahn, KE ;
Barchowsky, A .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1998, 349 (02) :356-362
[32]   Gen(om)e duplications in the evolution of early vertebrates [J].
Sidow, A .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1996, 6 (06) :715-722
[33]  
Siegel S., 1956, NONPARAMETRIC STAT B
[34]  
SIKORSKI RS, 1989, GENETICS, V122, P19
[35]   A genetic investigation of the essential role of glutathione - Mutations in the proline biosynthesis pathway are the only suppressors of glutathione auxotrophy in yeast [J].
Spector, D ;
Labarre, J ;
Toledano, MB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (10) :7011-7016
[36]  
STRYER L, 1981, BIOCHEMISTRY-US, P669
[37]   Metabolism of sulfur amino acids in Saccharomyces cerevisiae [J].
Thomas, D ;
SurdinKerjan, Y .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1997, 61 (04) :503-&
[38]   A proteome analysis of the cadmium response in Saccharomyces cerevisiae [J].
Vido, K ;
Spector, D ;
Lagniel, G ;
Lopez, S ;
Toledano, MB ;
Labarre, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (11) :8469-8474
[39]   Genome-wide expression monitoring in Saccharomyces cerevisiae [J].
Wodicka, L ;
Dong, HL ;
Mittmann, M ;
Ho, MH ;
Lockhart, DJ .
NATURE BIOTECHNOLOGY, 1997, 15 (13) :1359-1367
[40]  
WU AL, 1993, J BIOL CHEM, V268, P18850