共 56 条
Mixed Lineage Leukemia 5 (MLL5) Protein Regulates Cell Cycle Progression and E2F1-responsive Gene Expression via Association with Host Cell Factor-1 (HCF-1)
被引:58
作者:
Zhou, Peipei
[1
]
Wang, Zhilong
[1
]
Yuan, Xiujie
[1
]
Zhou, Cuihong
[1
]
Liu, Lulu
[1
,2
]
Wan, Xiaoling
[1
,2
]
Zhang, Feng
[1
]
Ding, Xiaodan
[1
]
Wang, Chuangui
[3
,4
]
Xiong, Sidong
[2
]
Wang, Zhen
[5
]
Yuan, Jinduo
[5
]
Li, Qiang
[6
]
Zhang, Yan
[1
]
机构:
[1] Chinese Acad Sci, Inst Pasteur Shanghai, Key Lab Mol Virol & Immunol, Shanghai 200025, Peoples R China
[2] Soochow Univ, Inst Biol & Med Sci, Suzhou 215123, Jiangsu, Peoples R China
[3] E China Normal Univ, Inst Biomed Sci, Shanghai 200241, Peoples R China
[4] E China Normal Univ, Coll Life Sci, Shanghai 200241, Peoples R China
[5] Shandong Normal Univ, Key Lab Anim Resistence Shandong Prov, Dept Biotechnol, Jinan 250014, Shandong, Peoples R China
[6] Fudan Univ, Childrens Hosp, Shanghai 201102, Peoples R China
基金:
中国国家自然科学基金;
关键词:
EMBRYONIC STEM-CELLS;
HERPES-SIMPLEX-VIRUS;
CHROMOSOME BAND 7Q22;
HISTONE METHYLTRANSFERASE;
PROTEOLYTIC CLEAVAGE;
COACTIVATOR HCF-1;
DNA-REPLICATION;
O-GLCNACYLATION;
MAMMALIAN CDC6;
E2F;
D O I:
10.1074/jbc.M112.439729
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Trithorax group proteins methylate lysine 4 of histone 3 (H3K4) at active gene promoters. MLL5 protein, a member of the Trithorax protein family, has been implicated in the control of the cell cycle progression; however, the underlying molecular mechanism(s) have not been fully determined. In this study, we found that the MLL5 protein can associate with the cell cycle regulator "host cell factor" (HCF-1). The interaction between MLL5 and HCF-1 is mediated by the "HCF-1 binding motif" (HBM) of the MLL5 protein and the Kelch domain of the HCF-1 protein. Confocal microscopy showed that the MLL5 protein largely colocalized with HCF-1 in the nucleus. Knockdown of MLL5 resulted in reduced cell proliferation and cell cycle arrest in the G(1) phase. Moreover, down-regulation of E2F1 target gene expression and decreased H3K4me3 levels at E2F1-responsive promoters were observed in MLL5 knockdown cells. Additionally, the core subunits, including ASH2L, RBBP5, and WDR5, that are necessary for effective H3K4 methyltransferase activities of the Trithorax protein complexes, were absent in the MLL5 complex, suggesting that a distinct mechanism may be used by MLL5 for exerting its H3K4 methyltransferase activity. Together, our findings demonstrate that MLL5 could associate with HCF-1 and then be recruited to E2F1-responsive promoters to stimulate H3K4 trimethylation and transcriptional activation, thereby facilitating the cell cycle G(1) to S phase transition.
引用
收藏
页码:17532 / 17543
页数:12
相关论文