Second harmonic generation from a nanopatterned isotropic nonlinear material

被引:127
作者
Fan, Wenjun
Zhang, Shuang
Panoiu, N. -C.
Abdenour, A.
Krishna, S.
Osgood, R. M., Jr.
Malloy, K. J.
Brueck, S. R. J. [1 ]
机构
[1] Univ New Mexico, Ctr High Technol Mat & Elect, Albuquerque, NM 87106 USA
[2] Univ New Mexico, Dept Comp Engn, Albuquerque, NM 87106 USA
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
关键词
D O I
10.1021/nl0604457
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Second harmonic generation (SHG) from a nanopatterned isotropic nonlinear material ( GaAs) located inside the subwavelength gaps of a metallic coaxial array is demonstrated. The SHG results from the strong electromagnetic fields in the vicinity of the coaxial gaps; the signal strength is comparable to that from z-cut LiNbO3 even though the path length is much shorter (similar to 100 nm compared to 14 Am). Numerical simulations are in good agreement with the experimental data. The observation of a peak-wavelength blue shift between the SH spectrum and the linear transmission spectrum is explained.
引用
收藏
页码:1027 / 1030
页数:4
相关论文
共 15 条
[1]   Second-harmonic generation from an array of sub-wavelength metal apertures [J].
Airola, M ;
Liu, Y ;
Blair, S .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2005, 7 (02) :S118-S123
[2]   Light transmission by subwavelength annular aperture arrays in metallic films [J].
Baida, FI ;
Van Labeke, D .
OPTICS COMMUNICATIONS, 2002, 209 (1-3) :17-22
[3]   Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film [J].
Barnes, WL ;
Murray, WA ;
Dintinger, J ;
Devaux, E ;
Ebbesen, TW .
PHYSICAL REVIEW LETTERS, 2004, 92 (10) :107401-1
[4]   Optical and interferometric lithography - Nanotechnology enablers [J].
Brueck, SRJ .
PROCEEDINGS OF THE IEEE, 2005, 93 (10) :1704-1721
[5]   EXPERIMENTAL-STUDY OF SURFACE-ENHANCED 2ND-HARMONIC GENERATION ON SILVER GRATINGS [J].
COUTAZ, JL ;
NEVIERE, M ;
PIC, E ;
REINISCH, R .
PHYSICAL REVIEW B, 1985, 32 (04) :2227-2232
[6]   Extraordinary optical transmission through sub-wavelength hole arrays [J].
Ebbesen, TW ;
Lezec, HJ ;
Ghaemi, HF ;
Thio, T ;
Wolff, PA .
NATURE, 1998, 391 (6668) :667-669
[7]   A TEMPERATURE-DEPENDENT DISPERSION-EQUATION FOR CONGRUENTLY GROWN LITHIUM-NIOBATE [J].
EDWARDS, GJ ;
LAWRENCE, M .
OPTICAL AND QUANTUM ELECTRONICS, 1984, 16 (04) :373-375
[8]   All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion [J].
Eyres, LA ;
Tourreau, PJ ;
Pinguet, TJ ;
Ebert, CB ;
Harris, JS ;
Fejer, MM ;
Becouarn, L ;
Gerard, B ;
Lallier, E .
APPLIED PHYSICS LETTERS, 2001, 79 (07) :904-906
[9]   Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays [J].
Fan, WJ ;
Zhang, S ;
Malloy, KJ ;
Brueck, SRJ .
OPTICS EXPRESS, 2005, 13 (12) :4406-4413
[10]   Enhanced infrared transmission through subwavelength coaxial metallic arrays [J].
Fan, WJ ;
Zhang, S ;
Minhas, B ;
Malloy, KJ ;
Brueck, SRJ .
PHYSICAL REVIEW LETTERS, 2005, 94 (03)