Good practice for conducting and reporting MEG research

被引:468
作者
Gross, Joachim [1 ]
Baillet, Sylvain [2 ]
Barnes, Gareth R. [3 ]
Henson, Richard N. [4 ]
Hillebrand, Arjan [5 ,6 ]
Jensen, Ole [7 ]
Jerbi, Karim [8 ]
Litvak, Vladimir [3 ]
Maess, Burkhard [9 ]
Oostenveld, Robert [7 ]
Parkkonen, Lauri [10 ,11 ]
Taylor, Jason R. [4 ]
van Wassenhove, Virginie [12 ,13 ,14 ]
Wibral, Michael [15 ]
Schoffelen, Jan-Mathijs [7 ,16 ]
机构
[1] Univ Glasgow, Ctr Cognit Neuroimaging, Glasgow G12 8QB, Lanark, Scotland
[2] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[3] UCL Inst Neurol, Wellcome Trust Ctr Neuroimaging, London WC1N 3BG, England
[4] MRC Cognit & Brain Sci Unit, Cambridge, England
[5] Vrije Univ Amsterdam, Med Ctr, Dept Clin Neurophysiol, Amsterdam, Netherlands
[6] Vrije Univ Amsterdam, Med Ctr, Magnetoencephalog Ctr, Amsterdam, Netherlands
[7] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, NL-6525 ED Nijmegen, Netherlands
[8] Lyon Univ, Lyon Neurosci Res Ctr CRNL, CNRS, INSERM,U1028,UMR5292, Lyon, France
[9] MPI Human Cognit & Brain Sci, Leipzig, Germany
[10] Aalto Univ, Sch Sci, OV Lounasmaa Lab, Brain Res Unit, Espoo, Finland
[11] Aalto Univ, Sch Sci, Dept Biomed Engn & Computat Sci, Espoo, Finland
[12] INSERM, U992, Cognit Neuroimaging Unit, F-91191 Gif Sur Yvette, France
[13] CEA, DSV I2BM, NeuroSpin Ctr, F-91191 Gif Sur Yvette, France
[14] Univ Paris 11, Cognit Neuroimaging Unit, F-91191 Gif Sur Yvette, France
[15] Brain Imaging Ctr, Frankfurt, Germany
[16] MPI Psycholinguist, Nijmegen, Netherlands
基金
英国生物技术与生命科学研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
Magnetoencephalography; MEG; Acquisition; Analysis; Connectivity; Source localization; Guidelines; Recommendations; Reproducible research; Spectral analysis; INDEPENDENT COMPONENT ANALYSIS; UNION INTERSECTION TESTS; EVENT-RELATED POTENTIALS; GAMMA-BAND RESPONSE; SACCADES; NEURON; 58; FUNCTIONAL CONNECTIVITY; SOURCE RECONSTRUCTION; OSCILLATORY ACTIVITY; EEG-DATA; ARTIFACT IDENTIFICATION;
D O I
10.1016/j.neuroimage.2012.10.001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Magnetoencephalographic (MEG) recordings are a rich source of information about the neural dynamics underlying cognitive processes in the brain, with excellent temporal and good spatial resolution. In recent years there have been considerable advances in MEG hardware developments and methods. Sophisticated analysis techniques are now routinely applied and continuously improved, leading to fascinating insights into the intricate dynamics of neural processes. However, the rapidly increasing level of complexity of the different steps in a MEG study make it difficult for novices, and sometimes even for experts, to stay aware of possible limitations and caveats. Furthermore, the complexity of MEG data acquisition and data analysis requires special attention when describing MEG studies in publications, in order to facilitate interpretation and reproduction of the results. This manuscript aims at making recommendations for a number of important data acquisition and data analysis steps and suggests details that should be specified in manuscripts reporting MEG studies. These recommendations will hopefully serve as guidelines that help to strengthen the position of the MEG research community within the field of neuroscience, and may foster discussion in order to further enhance the quality and impact of MEG research. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:349 / 363
页数:15
相关论文
共 141 条
  • [1] Co-registration of magnetoencephalography with magnetic resonance imaging using bite-bar-based fiducials and surface-matching
    Adjamian, P
    Barnes, GR
    Hillebrand, A
    Holliday, IE
    Singh, KD
    Furlong, PL
    Harrington, E
    Barclay, CW
    Route, PJG
    [J]. CLINICAL NEUROPHYSIOLOGY, 2004, 115 (03) : 691 - 698
  • [2] [Anonymous], NEUROIMAGE
  • [3] [Anonymous], 2008, SCHOLARPEDIA, DOI DOI 10.4249/SCHOLARPEDIA.1733
  • [4] Multimodal image coregistration and partitioning - A unified framework
    Ashburner, J
    Friston, K
    [J]. NEUROIMAGE, 1997, 6 (03) : 209 - 217
  • [5] Tracking the time-varying cortical connectivity patterns by adaptive multivariate estimators
    Astolfi, L.
    Cincotti, F.
    Mattia, D.
    Fallani, F. De Vico
    Tocci, A.
    Colosimo, A.
    Salinari, S.
    Marciani, M. G.
    Hesse, W.
    Witte, H.
    Ursino, M.
    Zavaglia, M.
    Babiloni, F.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (03) : 902 - 913
  • [6] Modelling and detecting deep brain activity with MEG and EEG
    Attal, Y.
    Bhattacharjee, M.
    Yelnik, J.
    Cottereau, B.
    Lefevre, J.
    Okada, Y.
    Bardinet, E.
    Chupin, M.
    Baillet, S.
    [J]. IRBM, 2009, 30 (03) : 133 - 138
  • [7] Electromagnetic brain mapping
    Baillet, S
    Mosher, JC
    Leahy, RM
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2001, 18 (06) : 14 - 30
  • [8] Academic Software Applications for Electromagnetic Brain Mapping Using MEG and EEG
    Baillet, Sylvain
    Friston, Karl
    Oostenveld, Robert
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
  • [9] Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals
    Barbati, G
    Porcaro, C
    Zappasodi, F
    Rossini, PM
    Tecchio, F
    [J]. CLINICAL NEUROPHYSIOLOGY, 2004, 115 (05) : 1220 - 1232
  • [10] Behaviour of Granger causality under filtering: Theoretical invariance and practical application
    Barnett, Lionel
    Seth, Anil K.
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2011, 201 (02) : 404 - 419