Simulated annealing in convex bodies and an O*(n4) volume algorithm

被引:124
作者
Lovász, L
Vempala, S
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Microsoft Res, Redmond, WA 98052 USA
基金
美国国家科学基金会;
关键词
convex bodies; volume computation; random walks; simulated annealing; logconcave functions;
D O I
10.1016/j.jcss.2005.08.004
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a new algorithm for computing the volume of a convex body in R-n. The main ingredients of the algorithm are (i) a "morphing" technique that can be viewed as a variant of simulated annealing and (ii) a new rounding algorithm to put a convex body in near-isotropic position. The complexity is O*(n(4)), improving on the previous best algorithm by a factor of n. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:392 / 417
页数:26
相关论文
共 23 条
[1]  
Applegate D., 1990, P 23 ACM STOC, P156
[2]   COMPUTING THE VOLUME IS DIFFICULT [J].
BARANY, I ;
FUREDI, Z .
DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (04) :319-326
[3]   Solving convex programs by random walks [J].
Bertsimas, D ;
Vempala, S .
JOURNAL OF THE ACM, 2004, 51 (04) :540-556
[4]  
DINGHAS A, 1957, MATH Z, V68, P111
[5]   A RANDOM POLYNOMIAL-TIME ALGORITHM FOR APPROXIMATING THE VOLUME OF CONVEX-BODIES [J].
DYER, M ;
FRIEZE, A ;
KANNAN, R .
JOURNAL OF THE ACM, 1991, 38 (01) :1-17
[6]   A GEOMETRIC INEQUALITY AND THE COMPLEXITY OF COMPUTING VOLUME [J].
ELEKES, G .
DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (04) :289-292
[7]  
Grotschel M, 2012, Geometric algorithms and combinatorial optimization, V2
[8]   RANDOM GENERATION OF COMBINATORIAL STRUCTURES FROM A UNIFORM-DISTRIBUTION [J].
JERRUM, MR ;
VALIANT, LG ;
VAZIRANI, VV .
THEORETICAL COMPUTER SCIENCE, 1986, 43 (2-3) :169-188
[9]  
Kannan R, 1997, RANDOM STRUCT ALGOR, V11, P1, DOI 10.1002/(SICI)1098-2418(199708)11:1<1::AID-RSA1>3.0.CO
[10]  
2-X