Solving convex programs by random walks

被引:127
作者
Bertsimas, D
Vempala, S
机构
[1] MIT, Sloan Sch Management, Cambridge, MA 02139 USA
[2] MIT, Ctr Operat Res, Cambridge, MA 02139 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
convex programs; random walks; polynomial time; algorithms; theory;
D O I
10.1145/1008731.1008733
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Minimizing a convex function over a convex set in n-dimensional space is a basic, general problem with many interesting special cases. Here, we present a simple new algorithm for convex optimization based on sampling by a random walk. It extends naturally to minimizing quasi-convex functions and to other generalizations.
引用
收藏
页码:540 / 556
页数:17
相关论文
共 23 条
  • [1] [Anonymous], P 31 ANN ACM S THEOR
  • [2] Bertsimas D., 1997, Introduction to linear optimization
  • [3] A RANDOM POLYNOMIAL-TIME ALGORITHM FOR APPROXIMATING THE VOLUME OF CONVEX-BODIES
    DYER, M
    FRIEZE, A
    KANNAN, R
    [J]. JOURNAL OF THE ACM, 1991, 38 (01) : 1 - 17
  • [4] The Brunn-Minkowski inequality
    Gardner, RJ
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) : 355 - 405
  • [5] THE ELLIPSOID METHOD AND ITS CONSEQUENCES IN COMBINATORIAL OPTIMIZATION
    GROTSCHEL, M
    LOVASZ, L
    SCHRIJVER, A
    [J]. COMBINATORICA, 1981, 1 (02) : 169 - 197
  • [6] Grotschel M, 2012, Geometric algorithms and combinatorial optimization, V2
  • [7] Grunbaum B., 1960, Pacific J. Math, V10, P1257, DOI [10.2140/pjm.1960.10.1257, DOI 10.2140/PJM.1960.10.1257]
  • [8] Jerrum M., 2001, P 33 ANN ACM S THEOR, P712
  • [9] Kalai A., 2002, J MACH LEARN RES, V3, P423
  • [10] Kannan R, 1997, RANDOM STRUCT ALGOR, V11, P1, DOI 10.1002/(SICI)1098-2418(199708)11:1<1::AID-RSA1>3.0.CO