Higher-order chromatin structure: bridging physics and biology

被引:128
作者
Fudenberg, Geoffrey [1 ]
Mirny, Leonid A. [1 ,2 ,3 ]
机构
[1] Harvard Univ, Grad Program Biophys, Cambridge, MA 02138 USA
[2] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
INTERPHASE CHROMOSOMES; MITOTIC CHROMOSOMES; GENE-EXPRESSION; SEQUENCING REVEALS; POLYMER MODELS; IN-SITU; ORGANIZATION; YEAST; TRANSCRIPTION; TERRITORIES;
D O I
10.1016/j.gde.2012.01.006
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of higher-order interphase chromatin organization. By taking into account topological constraints acting on the chromatin fiber, recently developed polymer models of interphase chromatin can reproduce the observed scaling of distances between genomic loci, chromosomal territories, and probabilities of contacts between loci measured by chromosome conformation capture methods. Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization.
引用
收藏
页码:115 / 124
页数:10
相关论文
共 85 条
[61]   Regulation of noise in the expression of a single gene [J].
Ozbudak, EM ;
Thattai, M ;
Kurtser, I ;
Grossman, AD ;
van Oudenaarden, A .
NATURE GENETICS, 2002, 31 (01) :69-73
[62]  
Phillips R, 2009, PHYS BIOL CELL
[63]   Control of stochasticity in eukaryotic gene expression [J].
Raser, JM ;
O'Shea, EK .
SCIENCE, 2004, 304 (5678) :1811-1814
[64]   Spatial proximity of translocation-prone gene loci in human lymphomas [J].
Roix, JJ ;
McQueen, PG ;
Munson, PJ ;
Parada, LA ;
Misteli, T .
NATURE GENETICS, 2003, 34 (03) :287-291
[65]   Looping Probabilities in Model Interphase Chromosomes [J].
Rosa, Angelo ;
Becker, Nils B. ;
Everaers, Ralf .
BIOPHYSICAL JOURNAL, 2010, 98 (11) :2410-2419
[66]   Structure and Dynamics of Interphase Chromosomes [J].
Rosa, Angelo ;
Everaers, Ralf .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (08)
[67]  
Rubinstein M., 2003, Polymer Physics, V23
[68]   Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types [J].
Ryba, Tyrone ;
Hiratani, Ichiro ;
Lu, Junjie ;
Itoh, Mari ;
Kulik, Michael ;
Zhang, Jinfeng ;
Schulz, Thomas C. ;
Robins, Allan J. ;
Dalton, Stephen ;
Gilbert, David M. .
GENOME RESEARCH, 2010, 20 (06) :761-770
[69]   A RANDOM-WALK GIANT-LOOP MODEL FOR INTERPHASE CHROMOSOMES [J].
SACHS, RK ;
VANDENENGH, G ;
TRASK, B ;
YOKOTA, H ;
HEARST, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (07) :2710-2714
[70]   What controls nucleosome positions? [J].
Segal, Eran ;
Widom, Jonathan .
TRENDS IN GENETICS, 2009, 25 (08) :335-343