Universal Distance-Scaling of Nonradiative Energy Transfer to Graphene

被引:209
作者
Gaudreau, L. [1 ]
Tielrooij, K. J. [1 ]
Prawiroatmodjo, G. E. D. K. [1 ]
Osmond, J. [1 ]
Garcia de Abajo, F. J. [2 ]
Koppens, F. H. L. [1 ]
机构
[1] Inst Photon Sci, ICFO, Castelldefels 08860, Barcelona, Spain
[2] CSIC, IQFR, E-28006 Madrid, Spain
关键词
Graphene; strong light-matter interaction; nano-optics; energy transfer; molecules; FLUORESCENCE; OXIDE; PLATFORM;
D O I
10.1021/nl400176b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The near-field interaction between fluorescent emitters and graphene exhibits rich physics associated with local dipole-induced electromagnetic fields that are strongly enhanced due to the unique properties of graphene. Here, we measure emitter lifetimes as a function of emitter-graphene distance d, and find agreement with a universal scaling law, governed by the fine-structure constant. The observed energy transfer rate is in agreement with a 1/d(4) dependence that is characteristic of two-dimensional lossy media. The emitter decay rate is enhanced 90 times (energy transfer efficiency of similar to 99%) with respect to the decay in vacuum at distances d approximate to 15 nm. This high energy transfer rate is mainly due to the two-dimensionality and gapless character of the monatomic carbon layer. Graphene is thus shown to be an extraordinary energy sink, holding great potential for photodetection, energy harvesting, and nanophotonics.
引用
收藏
页码:2030 / 2035
页数:6
相关论文
共 36 条
[1]  
[Anonymous], 1948, Handbook of Mathematical Functions withFormulas, Graphs, and Mathematical Tables, DOI DOI 10.1119/1.15378
[2]  
Barnes WL, 1998, J MOD OPTIC, V45, P661, DOI 10.1080/09500349808230614
[3]   Spontaneous light emission in complex nanostructures [J].
Blanco, LA ;
de Abajo, FJG .
PHYSICAL REVIEW B, 2004, 69 (20) :205414-1
[4]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection [J].
Chang, Haixin ;
Tang, Longhua ;
Wang, Ying ;
Jiang, Jianhui ;
Li, Jinghong .
ANALYTICAL CHEMISTRY, 2010, 82 (06) :2341-2346
[7]   Homogeneous detection of concanavalin A using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer [J].
Chen, Qiushui ;
Wei, Weili ;
Lin, Jin-Ming .
BIOSENSORS & BIOELECTRONICS, 2011, 26 (11) :4497-4502
[8]   Energy Transfer from Individual Semiconductor Nanocrystals to Graphene [J].
Chen, Zheyuan ;
Berciaud, Stephane ;
Nuckolls, Colin ;
Heinz, Tony F. ;
Brus, Louis E. .
ACS NANO, 2010, 4 (05) :2964-2968
[9]   Fluorescence Resonance Energy Transfer between Quantum Dots and Graphene Oxide for Sensing Biomolecules [J].
Dong, Haifeng ;
Gao, Wenchao ;
Yan, Feng ;
Ji, Hanxu ;
Ju, Huangxian .
ANALYTICAL CHEMISTRY, 2010, 82 (13) :5511-5517
[10]   QUANTUM OPTICS OF DIELECTRIC MEDIA [J].
GLAUBER, RJ ;
LEWENSTEIN, M .
PHYSICAL REVIEW A, 1991, 43 (01) :467-491