Proto-genes and de novo gene birth

被引:430
作者
Carvunis, Anne-Ruxandra [1 ,2 ,3 ,4 ]
Rolland, Thomas [1 ,2 ,3 ]
Wapinski, Ilan [5 ]
Calderwood, Michael A. [1 ,2 ,3 ]
Yildirim, Muhammed A. [6 ,7 ]
Simonis, Nicolas [1 ,2 ,3 ]
Charloteaux, Benoit [1 ,2 ,3 ,8 ,14 ]
Hidalgo, Cesar A. [9 ]
Barbette, Justin [1 ,2 ,3 ]
Santhanam, Balaji [1 ,2 ,3 ]
Brar, Gloria A. [10 ,11 ]
Weissman, Jonathan S. [10 ,11 ]
Regev, Aviv [12 ,13 ]
Thierry-Mieg, Nicolas [4 ]
Cusick, Michael E. [1 ,2 ,3 ]
Vidal, Marc [1 ,2 ,3 ]
机构
[1] Dana Farber Canc Inst, Ctr Canc Syst Biol CCSB, Boston, MA 02215 USA
[2] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02215 USA
[3] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[4] UJF Grenoble 1, CNRS, TIMC IMAG, UMR 5525,Computat & Math Biol Grp, F-38031 Grenoble, France
[5] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
[6] Harvard Univ, Cambridge, MA 02138 USA
[7] Ctr Int Dev, Cambridge, MA 02138 USA
[8] Univ Liege, GIGA R, Unit Anim Genom, B-4000 Liege, Wallonia Brusse, Belgium
[9] MIT, MIT Media Lab, Cambridge, MA 02142 USA
[10] Univ Calif San Francisco, Howard Hughes Med Inst, Dept Cell & Mol Pharmacol, San Francisco, CA 94158 USA
[11] Calif Inst Quantitat Biosci, San Francisco, CA 94158 USA
[12] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[13] MIT, Howard Hughes Med Inst, Dept Biol, Cambridge, MA 02139 USA
[14] Univ Liege, Fac Vet Med, B-4000 Liege, Belgium
关键词
SACCHAROMYCES-CEREVISIAE; YEAST GENOME; EVOLUTION; ADAPTATION; SELECTION; PROTEINS; SEQUENCE; ORIGIN; DNA;
D O I
10.1038/nature11184
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Novel protein-coding genes can arise either through re-organization of pre-existing genes or de novo(1,2). Processes involving re-organization of pre-existing genes, notably after gene duplication, have been extensively described(1,2). In contrast, de novo gene birth remains poorly understood, mainly because translation of sequences devoid of genes, or 'non-genic' sequences, is expected to produce insignificant polypeptides rather than proteins with specific biological functions(1,3-6). Here we formalize an evolutionary model according to which functional genes evolve de novo through transitory proto-genes(4) generated by widespread translational activity in non-genic sequences. Testing this model at the genome scale in Saccharomyces cerevisiae, we detect translation of hundreds of short species-specific open reading frames (ORFs) located in non-genic sequences. These translation events seem to provide adaptive potential(7), as suggested by their differential regulation upon stress and by signatures of retention by natural selection. In line with our model, we establish that S. cerevisiae ORFs can be placed within an evolutionary continuum ranging from non-genic sequences to genes. We identify similar to 1,900 candidate proto-genes among S. cerevisiae ORFs and find that de novo gene birth from such a reservoir may be more prevalent than sporadic gene duplication. Our work illustrates that evolution exploits seemingly dispensable sequences to generate adaptive functional innovation.
引用
收藏
页码:370 / 374
页数:5
相关论文
共 30 条
[1]   Large-scale exploration of growth inhibition caused by overexpression of genomic fragments in Saccharomyces cerevisiae -: art. no. R72 [J].
Boyer, J ;
Badis, G ;
Fairhead, C ;
Talla, E ;
Hantraye, F ;
Fabre, E ;
Fischer, G ;
Hennequin, C ;
Koszul, R ;
Lafontaine, I ;
Ozier-Kalogeropoulos, O ;
Ricchetti, M ;
Richard, GF ;
Thierry, A ;
Dujon, B .
GENOME BIOLOGY, 2004, 5 (09)
[2]   High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling [J].
Brar, Gloria A. ;
Yassour, Moran ;
Friedman, Nir ;
Regev, Aviv ;
Ingolia, Nicholas T. ;
Weissman, Jonathan S. .
SCIENCE, 2012, 335 (6068) :552-557
[3]   Relaxed Purifying Selection and Possibly High Rate of Adaptation in Primate Lineage-Specific Genes [J].
Cai, James J. ;
Petrov, Dmitri A. .
GENOME BIOLOGY AND EVOLUTION, 2010, 2 :393-409
[4]   De novo origination of a new protein-coding gene in Saccharomyces cerevisiae [J].
Cai, Jing ;
Zhao, Ruoping ;
Jiang, Huifeng ;
Wang, Wen .
GENETICS, 2008, 179 (01) :487-496
[5]   A single determinant dominates the rate of yeast protein evolution [J].
Drummond, DA ;
Raval, A ;
Wilke, CO .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (02) :327-337
[6]   Identifying and Quantifying Orphan Protein Sequences in Fungi [J].
Ekman, Diana ;
Elofsson, Arne .
JOURNAL OF MOLECULAR BIOLOGY, 2010, 396 (02) :396-405
[7]   Saccharomyces cerevisiae S288C genome annotation:: a working hypothesis [J].
Fisk, Dianna G. ;
Ball, Catherine A. ;
Dolinski, Kara ;
Engel, Stacia R. ;
Hong, Eurie L. ;
Issel-Tarver, Laurie ;
Schwartz, Katja ;
Sethuraman, Anand ;
Botstein, David ;
Cherry, J. Michael .
YEAST, 2006, 23 (12) :857-865
[8]   Very low gene duplication rate in the yeast genome [J].
Gao, LZ ;
Innan, H .
SCIENCE, 2004, 306 (5700) :1367-1370
[9]   The conversion of 3′ UTRs into coding regions [J].
Giacomelli, Michael G. ;
Hancock, Adam S. ;
Masel, Joanna .
MOLECULAR BIOLOGY AND EVOLUTION, 2007, 24 (02) :457-464
[10]   Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme [J].
Hayden, Eric J. ;
Ferrada, Evandro ;
Wagner, Andreas .
NATURE, 2011, 474 (7349) :92-U120