Large-scale exploration of growth inhibition caused by overexpression of genomic fragments in Saccharomyces cerevisiae -: art. no. R72

被引:32
作者
Boyer, J
Badis, G
Fairhead, C
Talla, E
Hantraye, F
Fabre, E
Fischer, G
Hennequin, C
Koszul, R
Lafontaine, I
Ozier-Kalogeropoulos, O
Ricchetti, M
Richard, GF
Thierry, A
Dujon, B
机构
[1] Univ Paris 06, CNRS, URA 2171, Unite Genet Mol Levures, F-75724 Paris 15, France
[2] Univ Paris 06, UFR 927, F-75724 Paris 15, France
[3] Inst Pasteur, Dept Struct & Dynam Genomes, F-75724 Paris 15, France
[4] CNRS, Chim Bacterienne Lab, F-13402 Marseille 20, France
[5] Univ Paris 06, Parasitol Lab, F-75012 Paris, France
[6] Inst Pasteur, Unite Genet & Biochim Dev, F-75724 Paris 15, France
关键词
D O I
10.1186/gb-2004-5-9-r72
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We have screened the genome of Saccharomyces cerevisiae for fragments that confer a growth-retardation phenotype when overexpressed in a multicopy plasmid with a tetracycline-regulatable (Tet-off) promoter. We selected 714 such fragments with a mean size of 700 base-pairs out of around 84,000 clones tested. These include 493 in-frame open reading frame fragments corresponding to 454 distinct genes ( of which 91 are of unknown function), and 162 out-of-frame, antisense and intergenic genomic fragments, representing the largest collection of toxic inserts published so far in yeast.
引用
收藏
页数:19
相关论文
共 71 条
[1]   Screening and identification of yeast sequences that cause growth inhibition when overexpressed [J].
Akada, R ;
Yamamoto, J ;
Yamashita, I .
MOLECULAR AND GENERAL GENETICS, 1997, 254 (03) :267-274
[2]   Protein kinase activity and identification of a toxic effector domain of the target of rapamycin TOR proteins in yeast [J].
Alarcon, CM ;
Heitman, J ;
Cardenas, ME .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (08) :2531-2546
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[5]   Genomic Exploration of the Hemiascomycetous Yeasts:: 4.: The genome of Saccharomyces cerevisiae revisited [J].
Blandin, G ;
Durrens, P ;
Tekaia, F ;
Aigle, M ;
Bolotin-Fukuhara, M ;
Bon, E ;
Casarégola, S ;
de Montigny, J ;
Gaillardin, C ;
Lépingle, A ;
Llorente, B ;
Malpertuy, A ;
Neuvéglise, C ;
Ozier-Kalogeropoulos, O ;
Perrin, A ;
Potier, S ;
Souciet, JL ;
Talla, E ;
Toffano-Nioche, C ;
Wésolowski-Louvel, M ;
Marck, C ;
Dujon, B .
FEBS LETTERS, 2000, 487 (01) :31-36
[6]   New technologies to assess genotype-phenotype relationships [J].
Bochner, BR .
NATURE REVIEWS GENETICS, 2003, 4 (04) :309-314
[7]   The yeast Saccharomyces cerevisiae YDL112w ORF encodes the putative 2′-O-ribose methyltransferase catalyzing the formation of Gm18 in tRNAs [J].
Cavaillé, J ;
Chetouani, F ;
Bachellerie, JP .
RNA, 1999, 5 (01) :66-81
[8]   The role of the genetic code in generating new coding sequences inside existing genes [J].
Cebrat, S ;
Mackiewicz, P ;
Dudek, MR .
BIOSYSTEMS, 1998, 45 (02) :165-176
[9]  
CLAROS MG, 1994, COMPUT APPL BIOSCI, V10, P685
[10]  
De Hertogh Benoit, 2002, Funct Integr Genomics, V2, P154