OSTROWSKI TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR MT-CONVEX FUNCTIONS

被引:56
作者
Liu, Wenjun [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ostrowski type inequality; MT-convex function; fractional integral; MAPPINGS;
D O I
10.18514/MMN.2015.1131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some inequalities of Ostrowski type for MT-convex functions via fractional integrals are obtained. These results not only generalize those of [25], but also provide new estimates on these types of Ostrowski inequalities for fractional integrals.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 26 条
  • [11] Approximating the finite Hilbert transform via a companion of Ostrowski's inequality for function of bounded variation and applications
    Liu, Wenjun
    Gao, Xingyue
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 373 - 385
  • [12] Liu WJ, 2014, J COMPUT ANAL APPL, V16, P998
  • [13] Liu WJ, 2010, DYNAM SYST APPL, V19, P189
  • [14] Ostrowski Type Inequalities on Time Scales for Double Integrals
    Liu, Wenjun
    Quoc Anh Ngo
    Chen, Wenbing
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (01) : 477 - 497
  • [15] Liu WW, 2013, MED GAS RES, V3, DOI [10.1186/2045-9912-3-3, 10.1063/2.1306201]
  • [16] Liu Z., 2009, J. Ineq. Pure & Appl. Math., V10, P12
  • [17] On sharp inequalities of Simpson type and Ostrowski type in two independent variables
    Lue Zhongxue
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (08) : 2043 - 2047
  • [18] Mitrinovic D.S., 1991, MATH ITS APPL E EURO, V53
  • [19] Ostrowski, 1938, COMMENT MATH HELV, V10, P226
  • [20] Podlubny I., 1999, Mathematics in Science and Engineering