Back-action evasion and squeezing of a mechanical resonator using a cavity detector

被引:266
作者
Clerk, A. A. [1 ]
Marquardt, F. [2 ]
Jacobs, K. [3 ]
机构
[1] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[2] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, Dept Phys, D-80333 Munich, Germany
[3] Univ Munich, Ctr Nanosci, D-80333 Munich, Germany
来源
NEW JOURNAL OF PHYSICS | 2008年 / 10卷
关键词
D O I
10.1088/1367-2630/10/9/095010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the quantum measurement of a cantilever using a parametrically coupled electromagnetic cavity which is driven at the two sidebands corresponding to the mechanical motion. This scheme, originally due to Braginsky et al (Braginsky V, Vorontsov Y I and Thorne K P 1980 Science 209 547), allows a back-action free measurement of one quadrature of the cantilever's motion, and hence the possibility of generating a squeezed state. We present a complete quantum theory of this system, and derive simple conditions on when the quantum limit on the added noise can be surpassed. We also study the conditional dynamics of the measurement, and discuss how such a scheme (when coupled with feedback) can be used to generate and detect squeezed states of the oscillator. Our results are relevant to experiments in optomechanics, and to experiments in quantum electromechanics employing stripline resonators coupled to mechanical resonators.
引用
收藏
页数:20
相关论文
共 37 条
[21]   Nanometre-scale displacement sensing using a single electron transistor [J].
Knobel, RG ;
Cleland, AN .
NATURE, 2003, 424 (6946) :291-293
[22]   Approaching the quantum limit of a nanomechanical resonator [J].
LaHaye, MD ;
Buu, O ;
Camarota, B ;
Schwab, KC .
SCIENCE, 2004, 304 (5667) :74-77
[23]   Quantum theory of cavity-assisted sideband cooling of mechanical motion [J].
Marquardt, Florian ;
Chen, Joe P. ;
Clerk, A. A. ;
Girvin, S. M. .
PHYSICAL REVIEW LETTERS, 2007, 99 (09)
[24]   Measurement of energy eigenstates by a slow detector [J].
Martin, I. ;
Zurek, W. H. .
PHYSICAL REVIEW LETTERS, 2007, 98 (12)
[25]   Cavity cooling of a microlever [J].
Metzger, CH ;
Karrai, K .
NATURE, 2004, 432 (7020) :1002-1005
[26]   Cooling a nanomechanical resonator with quantum back-action [J].
Naik, A. ;
Buu, O. ;
LaHaye, M. D. ;
Armour, A. D. ;
Clerk, A. A. ;
Blencowe, M. P. ;
Schwab, K. C. .
NATURE, 2006, 443 (7108) :193-196
[27]   Feedback cooling of a cantilever's fundamental mode below 5 mK [J].
Poggio, M. ;
Degen, C. L. ;
Mamin, H. J. ;
Rugar, D. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[28]   Measuring nanomechanical motion with a microwave cavity interferometer [J].
Regal, C. A. ;
Teufel, J. D. ;
Lehnert, K. W. .
NATURE PHYSICS, 2008, 4 (07) :555-560
[29]   Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback [J].
Ruskov, R ;
Schwab, K ;
Korotkov, AN .
PHYSICAL REVIEW B, 2005, 71 (23)
[30]   Anharmonic effects on a phonon-number measurement of a quantum-mesoscopic-mechanical oscillator [J].
Santamore, DH ;
Goan, HS ;
Milburn, GJ ;
Roukes, ML .
PHYSICAL REVIEW A, 2004, 70 (05) :052105-1