Well-balanced finite volume schemes for 2D non-homogeneous hyperbolic systems.: Application to the dam break of Aznalcollar

被引:11
作者
Castro Diaz, M. J. [2 ]
Chacon Rebollo, T. [3 ]
Fernandez-Nieto, E. D. [1 ]
Gonzalez Vida, J. M. [4 ]
Pares, C. [2 ]
机构
[1] U Sevilla, ETS Arquitectura, Dpto Matemat Aplicada 1, Seville 41012, Spain
[2] U Malaga, Dpto Anal Matemat, Malaga, Spain
[3] U Sevilla, Dpto Ecuaciones Diferenciales & Anal Numer, Seville 41080, Spain
[4] U Malaga, Dpto Matemat Aplicada, Malaga, Spain
关键词
finite volume method; well-balanced; upwinding; shallow water; source terms;
D O I
10.1016/j.cma.2008.03.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we introduce a class of well-balanced finite volume schemes for 2D non-homogeneous hyperbolic systems. We extend the derivation of standard finite volume solvers for homogeneous systems to non-homogeneous ones using the method of lines. We study conservation and some well-balanced properties of the numerical scheme. We apply our solvers to shallow water equations: we prove that these exactly compute the water at rest solutions. We also perform some numerical tests, by comparing with ID solutions, simulating the formation of a hydraulic drop and a hydraulic jump, and studying a real dam break: Aznalcollar, an ecological disaster happened in the province of Seville, Spain in 1998. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3932 / 3950
页数:19
相关论文
共 28 条
[1]   The local discontinuous Galerkin method for three-dimensional shallow water flow [J].
Aizinger, Vadym ;
Dawson, Clint .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (4-6) :734-746
[2]  
AMARA M, 2004, ECCOMAS CDRON P
[3]  
AUDUSSE E, 2004, ECCOMAS CDRON P
[4]   Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes [J].
Bermudez, A ;
Dervieux, A ;
Desideri, JA ;
Vazquez, ME .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 155 (1-2) :49-72
[5]   UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS [J].
BERMUDEZ, A ;
VAZQUEZ, E .
COMPUTERS & FLUIDS, 1994, 23 (08) :1049-1071
[6]   Unsteady free surface flow simulation over complex topography with a multidimensional upwind technique [J].
Brufau, P ;
García-Navarro, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 186 (02) :503-526
[7]   On well-balanced finite volume methods for nonconservative nonhomogeneous hyperbolic systems [J].
Castro Diaz, M. J. ;
Chacon Rebollo, T. ;
Fernandez-Nieto, E. D. ;
Pares, Carlos .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (03) :1093-1126
[8]   Numerical treatment of wet/dry fronts in shallow flows with a modified Roe scheme [J].
Castro, Manuel J. ;
Gonzalez-Vida, Jose M. ;
Pares, Carlos .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (06) :897-931
[9]   A parallel 2d finite volume scheme for solving systems of balance laws with nonconservative products:: Application to shallow flows [J].
Castro, MJ ;
García-Rodríguez, JA ;
González-Vida, JM ;
Parés, C .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (19-22) :2788-2815
[10]   The numerical treatment of wet/dry fronts in shallow flows:: Application to one-layer and two-layer systems [J].
Castro, MJ ;
Ferreiro, AMF ;
García-Rodríguez, JA ;
González-Vida, JM ;
Macías, J ;
Parés, C ;
Vázquez-Cendón, ME .
MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (3-4) :419-439