Chaotic attractors, chaotic saddles, and fractal basin boundaries: Goodwin's nonlinear accelerator model reconsidered

被引:55
作者
Lorenz, HW
Nusse, HE
机构
[1] Univ Jena, Wirtschaftwissensch Fak, Fac Macroecon, D-07740 Jena, Germany
[2] Univ Groningen, Fac Econ Wetensch, NL-9700 AV Groningen, Netherlands
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0960-0779(01)00121-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Goodwin's nonlinear accelerator model with periodic investment outlays is reconsidered and used as an economic example of the emergence of complex motion in nonlinear dynamical systems. In addition to chaotic attractors, the model can possess coexisting attracting periodic orbits or simple attractors which might imply the emergence of transient chaotic motion. Straddle methods are used in the analysis of the model in order to detect compact invariant (Cantor-like) sets which are responsible for the complexity of the transient motion. Economic nonlinear models, which exhibit transient chaotic dynamics, are prevalent. (C) 2002 Published by Elsevier Science Ltd.
引用
收藏
页码:957 / 965
页数:9
相关论文
共 29 条
[1]   MULTIPLE COEXISTING ATTRACTORS, BASIN BOUNDARIES AND BASIC SETS [J].
BATTELINO, PM ;
GREBOGI, C ;
OTT, E ;
YORKE, JA ;
YORKE, ED .
PHYSICA D, 1988, 32 (02) :296-305
[2]   BIFURCATION TO CHAOTIC SCATTERING [J].
BLEHER, S ;
GREBOGI, C ;
OTT, E .
PHYSICA D, 1990, 46 (01) :87-121
[3]   EQUILIBRIUM-MODELS DISPLAYING ENDOGENOUS FLUCTUATIONS AND CHAOS - A SURVEY [J].
BOLDRIN, M ;
WOODFORD, M .
JOURNAL OF MONETARY ECONOMICS, 1990, 25 (02) :189-222
[4]   ACYCLICITY AND STABILITY FOR INTERTEMPORAL OPTIMIZATION MODELS [J].
BOLDRIN, M ;
MONTRUCCHIO, L .
INTERNATIONAL ECONOMIC REVIEW, 1988, 29 (01) :137-146
[5]   Coding, channel capacity, and noise resistance in communicating with chaos [J].
Bollt, E ;
Lai, YC ;
Grebogi, C .
PHYSICAL REVIEW LETTERS, 1997, 79 (19) :3787-3790
[6]   SHIFT AUTOMORPHISMS IN THE HENON MAPPING [J].
DEVANEY, R ;
NITECKI, Z .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 67 (02) :137-146
[7]   THE NONLINEAR ACCELERATOR AND THE PERSISTENCE OF BUSINESS CYCLES [J].
Goodwin, R. M. .
ECONOMETRICA, 1951, 19 (01) :1-17
[8]  
Goodwin R.M., 1990, Chaotic economic dynamics
[9]   ON ENDOGENOUS COMPETITIVE BUSINESS CYCLES [J].
GRANDMONT, JM .
ECONOMETRICA, 1985, 53 (05) :995-1045
[10]   CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1983, 7 (1-3) :181-200