α-Fe2O3 nanoparticles anchored on graphene with 3D quasi-laminated architecture: in situ wet chemistry synthesis and enhanced electrochemical performance for lithium ion batteries

被引:84
作者
Chen, Dezhi [1 ,2 ]
Wei, Wei [1 ]
Wang, Ruining [1 ]
Zhu, Jingchao [1 ]
Guo, Lin [1 ]
机构
[1] Beihang Univ, Sch Chem & Environm, Beijing 100191, Peoples R China
[2] Nanchang Hangkong Univ, Sch Environm & Chem Engn, Nanchang 330063, Peoples R China
关键词
ANODE MATERIAL; REVERSIBLE CAPACITY; ELECTRODE MATERIALS; NEGATIVE-ELECTRODE; STORAGE PROPERTIES; GRAPHITE OXIDE; COMPOSITE; NANOCOMPOSITE; CONVERSION; NANOSTRUCTURES;
D O I
10.1039/c2nj40151g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel alpha-Fe2O3/graphene composite is prepared by a simple in situ wet chemistry approach. The alpha-Fe2O3 particles with diameter around 130 nm are homogeneously anchored on graphene nanosheets to form a 3D quasi-laminated architecture. Such a well-organized flexible structure can offer sufficient void space to facilitate the electrolyte penetration, alleviate the effect of the volume change of alpha-Fe2O3 particles and avoid particle-particle aggregation during lithium insertion/desertion. In addition, graphene not only improves the electric conductivity of the composite electrode but also maintains the structural integrity of the composite electrode during long-term cycling. As anode material for Li-ion batteries, the alpha-Fe2O3/graphene composite electrode exhibits a stable capacity of 742 mAh g(-1) up to 50 cycles. The synthesis technique is suitable for practical large-scale production of graphene-based metal oxide composites as advanced electrode materials for rechargeable Li-ion batteries.
引用
收藏
页码:1589 / 1595
页数:7
相关论文
共 65 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Nanoparticles of SnO produced by sonochemistry as anode materials for rechargeable lithium batteries [J].
Aurbach, D ;
Nimberger, A ;
Markovsky, B ;
Levi, E ;
Sominski, E ;
Gedanken, A .
CHEMISTRY OF MATERIALS, 2002, 14 (10) :4155-4163
[4]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[5]   Graphene-based materials in electrochemistry [J].
Chen, Da ;
Tang, Longhua ;
Li, Jinghong .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3157-3180
[6]   An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid [J].
Chen, Dezhi ;
Li, Lidong ;
Guo, Lin .
NANOTECHNOLOGY, 2011, 22 (32)
[7]   Surfactant carbonization to synthesize pseudocubic α-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries [J].
Cheng, Feng ;
Huang, Kelong ;
Liu, Suqin ;
Liu, Jianlei ;
Deng, Ruijie .
ELECTROCHIMICA ACTA, 2011, 56 (16) :5593-5598
[8]   High-surface-area α-Fe2O3/carbon nanocomposite: one-step synthesis and its highly reversible and enhanced high-rate lithium storage properties [J].
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Wexler, David ;
Konstantinov, Konstantin ;
Zhong, Chao ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (11) :2092-2098
[9]  
deFaria DLA, 1997, J RAMAN SPECTROSC, V28, P873, DOI 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO
[10]  
2-B