Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery

被引:69
作者
Banerjee, Shashwat S. [1 ]
Chen, Dong-Hwang [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 701, Taiwan
关键词
D O I
10.1088/0957-4484/19/50/505104
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A novel multifunctional magnetic nanocarrier was fabricated for synchronous cancer therapy and sensing. The nanocarrier, programed to display a response to environmental stimuli (pH value), was synthesized by coupling doxorubicin (DOX) to adipic dihydrazide-grafted gum arabic modified magnetic nanoparticles (ADH-GAMNP) via the hydrolytically degradable pH-sensitive hydrazone bond. The resultant nanocarrier, DOX-ADH-GAMNP, had a mean diameter of 13.8 nm and the amount of DOX coupled was about 6.52 mg g(-1). Also, it exhibited pH triggered release of DOX in an acidic environment (pH 5.0) but was relatively stable at physiological pH (pH 7.4). Furthermore, both GAMNP and DOX were found to possess fluorescence properties when excited in the near-infrared region due to the two-photon absorption mechanism. The coupling of DOX to GAMNP resulted in a reversible self-quenching of fluorescence through the fluorescence resonant energy transfer (FRET) between the donor GAMNP and acceptor DOX. The release of DOX from DOX-ADH-GAMNP when exposed to acidic media indicated the recovery of fluorescence from both GAMNP and DOX. The change in the fluorescence intensity of DOX-ADH-GAMNP on the release of DOX can act as a potential sensor to sense the delivery of the drug. The analysis of zeta potential and plasmon absorbance in different pH conditions also confirmed the pH sensitivity of the product. This multifunctional nanocarrier is a significant breakthrough in developing a drug delivery vehicle that combines drug targeting as well as sensing and therapy at the same time.
引用
收藏
页数:8
相关论文
共 33 条
[1]   Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change [J].
Bae, Y ;
Fukushima, S ;
Harada, A ;
Kataoka, K .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (38) :4640-4643
[2]   Quantum dot - Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer [J].
Bagalkot, Vaishali ;
Zhang, Liangfang ;
Levy-Nissenbaum, Etgar ;
Jon, Sangyong ;
Kantoff, Philip W. ;
Langer, Robert ;
Farokhzad, Omid C. .
NANO LETTERS, 2007, 7 (10) :3065-3070
[3]   Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery [J].
Banerjee, Shashwat S. ;
Chen, Dong-Hwang .
CHEMISTRY OF MATERIALS, 2007, 19 (25) :6345-6349
[4]   Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent [J].
Banerjee, Shashwat S. ;
Chen, Dong-Hwang .
JOURNAL OF HAZARDOUS MATERIALS, 2007, 147 (03) :792-799
[5]   Glucose-grafted gum arabic modified magnetic nanoparticles: Preparation and specific interaction with concanavalin A [J].
Banerjee, Shashwat S. ;
Chen, Dong-Hwang .
CHEMISTRY OF MATERIALS, 2007, 19 (15) :3667-3672
[6]   Fluorescence-modified superparamagnetic nanoparticles:: Intracellular uptake and use in cellular imaging [J].
Bertorelle, Franck ;
Wilhelm, Claire ;
Roger, Jacky ;
Gazeau, Florence ;
Menager, Christine ;
Cabuil, Valerie .
LANGMUIR, 2006, 22 (12) :5385-5391
[7]   Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors [J].
Clapp, AR ;
Medintz, IL ;
Mauro, JM ;
Fisher, BR ;
Bawendi, MG ;
Mattoussi, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (01) :301-310
[8]   Release from polymeric prodrugs: Linkages and their degradation [J].
D'Souza, AJM ;
Topp, EM .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2004, 93 (08) :1962-1979
[9]   Singlet oxygen generation via two-photon excited FRET [J].
Dichtel, WR ;
Serin, JM ;
Edder, C ;
Fréchet, JMJ ;
Matuszewski, M ;
Tan, LS ;
Ohulchanskyy, TY ;
Prasad, PN .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (17) :5380-5381
[10]   The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis [J].
Emerich, Dwaine F. ;
Thanos, Christopher G. .
BIOMOLECULAR ENGINEERING, 2006, 23 (04) :171-184