Nerve growth factor attenuates endoplasmic reticulum stress-mediated apoptosis via suppression of caspase-12 activity

被引:34
作者
Shimoke, K
Amano, H
Kishi, S
Uchida, H
Kudo, M
Ikeuchi, T
机构
[1] Kansai Univ, Fac Engn, Neurobiol Lab, Osaka 5648680, Japan
[2] Kansai Univ, High Technol Res Ctr, Osaka 5648680, Japan
[3] Tokyo Med Univ, Dept Pathol 2, Shinjuku Ku, Tokyo 1600023, Japan
关键词
apoptosis; caspases; ER stress; NGF; PI3-K;
D O I
10.1093/jb/mvh053
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Following endoplasmic reticulum. (ER) stress, which occurs via inhibition of the glycosylation of newly synthesized proteins, caspase family proteins are activated to promote ER stress-mediated apoptosis. Here we report that nerve growth factor (NGF) suppressed the ER stress-mediated apoptosis in tunicamycin-treated PC12 cells through an extensive decrease of the caspase-3/-9/-12 activity. Detailed analysis of the mechanism underlying the NGF-mediated cell survival revealed that the activities of all seriate caspases were reduced through the phosphatidylinositol 3-kinase (PI3-K) signaling pathway induced by NGF. Moreover, we found that the activity of c-Jun N-terminal kinase (JNK) was not essential for the tunicamycin-induced apoptosis of PC12 cells. These results demonstrate that the inactivation of caspase-12 via the NGF-mediated PI3-K signaling pathway leads to inactivation of the caspase cascade including caspase-3 and -9.
引用
收藏
页码:439 / 446
页数:8
相关论文
共 37 条
[1]   Apoptosomes: engines for caspase activation [J].
Adams, JM ;
Cory, S .
CURRENT OPINION IN CELL BIOLOGY, 2002, 14 (06) :715-720
[2]   Impairment of the ubiquitin-proteasome system by protein aggregation [J].
Bence, NF ;
Sampat, RM ;
Kopito, RR .
SCIENCE, 2001, 292 (5521) :1552-1555
[3]   Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway [J].
Brunet, A ;
Datta, SR ;
Greenberg, ME .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (03) :297-305
[4]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[5]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321
[6]   Evidence for proteasome involvement in polyglutamine disease:: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro [J].
Chai, YH ;
Koppenhafer, SL ;
Shoesmith, SJ ;
Perez, MK ;
Paulson, HL .
HUMAN MOLECULAR GENETICS, 1999, 8 (04) :673-682
[7]   Pathways to parkinsonism [J].
Cookson, MR .
NEURON, 2003, 37 (01) :7-10
[8]   Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery [J].
Datta, SR ;
Dudek, H ;
Tao, X ;
Masters, S ;
Fu, HA ;
Gotoh, Y ;
Greenberg, ME .
CELL, 1997, 91 (02) :231-241
[9]   Regulation of neuronal survival by the serine-threonine protein kinase Akt [J].
Dudek, H ;
Datta, SR ;
Franke, TF ;
Birnbaum, MJ ;
Yao, RJ ;
Cooper, GM ;
Segal, RA ;
Kaplan, DR ;
Greenberg, ME .
SCIENCE, 1997, 275 (5300) :661-665
[10]   A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD [J].
Enari, M ;
Sakahira, H ;
Yokoyama, H ;
Okawa, K ;
Iwamatsu, A ;
Nagata, S .
NATURE, 1998, 391 (6662) :43-50