Microbial responses to environmental arsenic

被引:294
作者
Paez-Espino, David [1 ]
Tamames, Javier [2 ]
de Lorenzo, Victor [1 ]
Canovas, David [3 ]
机构
[1] CSIC, Ctr Nacl Biotecnol, Madrid 28049, Spain
[2] Univ Valencia, Inst Cavanilles Biodiversitat & Biol Evolut, Valencia 46071, Spain
[3] Univ Seville, Fac Biol, Dept Genet, E-41012 Seville, Spain
关键词
Arsenic; Bioremediation; Bacteria; Metallothioneins; Heavy metals; ars genes; FUCUS-VESICULOSUS METALLOTHIONEIN; PHOSPHATE-TRANSPORT-SYSTEMS; FLUORESCENS STRAIN MSP3; ARS OPERON HOMOLOG; ASPERGILLUS SP P37; ESCHERICHIA-COLI; SP-NOV; CRYSTAL-STRUCTURE; BACTERIAL-CELLS; GOLD MINE;
D O I
10.1007/s10534-008-9195-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microorganisms have evolved dynamic mechanisms for facing the toxicity of arsenic in the environment. In this sense, arsenic speciation and mobility is also affected by the microbial metabolism that participates in the biogeochemical cycle of the element. The ars operon constitutes the most ubiquitous and important scheme of arsenic tolerance in bacteria. This system mediates the extrusion of arsenite out of the cells. There are also other microbial activities that alter the chemical characteristics of arsenic: some strains are able to oxidize arsenite or reduce arsenate as part of their respiratory processes. These type of microorganisms require membrane associated proteins that transfer electrons from or to arsenic (AoxAB and ArrAB, respectively). Other enzymatic transformations, such as methylation-demethylation reactions, exchange inorganic arsenic into organic forms contributing to its complex environmental turnover. This short review highlights recent studies in ecology, biochemistry and molecular biology of these processes in bacteria, and also provides some examples of genetic engineering for enhanced arsenic accumulation based on phytochelatins or metallothionein-like proteins.
引用
收藏
页码:117 / 130
页数:14
相关论文
共 112 条
[1]   Diversity of arsenite transporter genes from arsenic-resistant soil bacteria [J].
Achour, Asma Rokbani ;
Bauda, Pascale ;
Billard, Patrick .
RESEARCH IN MICROBIOLOGY, 2007, 158 (02) :128-137
[2]   The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10 [J].
Afkar, E ;
Lisak, J ;
Saltikov, C ;
Basu, P ;
Oremland, RS ;
Stolz, JF .
FEMS MICROBIOLOGY LETTERS, 2003, 226 (01) :107-112
[3]   MICROBE GROWS BY REDUCING ARSENIC [J].
AHMANN, D ;
ROBERTS, AL ;
KRUMHOLZ, LR ;
MOREL, FMM .
NATURE, 1994, 371 (6500) :750-750
[4]  
ANDERSON GL, 1992, J BIOL CHEM, V267, P23674
[5]   Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic [J].
Appelo, CAJ ;
Van der Weiden, MJJ ;
Tournassat, C ;
Charlet, L .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (14) :3096-3103
[6]   Enhanced mercury biosorption by bacterial cells with surface-displayed MerR [J].
Bae, W ;
Wu, CH ;
Kostal, J ;
Mulchandani, A ;
Chen, W .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (06) :3176-3180
[7]   Microbial methylation of metalloids: Arsenic, antimony, and bismuth [J].
Bentley, R ;
Chasteen, TG .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2002, 66 (02) :250-+
[8]   Phytodetoxification of hazardous organomercurials by genetically engineered plants [J].
Bizily, SP ;
Rugh, CL ;
Meagher, RB .
NATURE BIOTECHNOLOGY, 2000, 18 (02) :213-217
[9]   Bacillus arsenicoselenatis, sp nov, and Bacillus selenitireducens, sp nov:: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic [J].
Blum, JS ;
Bindi, AB ;
Buzzelli, J ;
Stolz, JF ;
Oremland, RS .
ARCHIVES OF MICROBIOLOGY, 1998, 171 (01) :19-30
[10]   The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli [J].
Butcher, BG ;
Deane, SM ;
Rawlings, DE .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (05) :1826-1833