Confinement effects on the spatial extent of the reaction front in ultrathin chemically amplified photoresists

被引:52
作者
Goldfarb, DL [1 ]
Angelopoulos, M
Lin, EK
Jones, RL
Soles, CL
Lenhart, JL
Wu, WL
机构
[1] IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2001年 / 19卷 / 06期
关键词
D O I
10.1116/1.1421559
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sub-100 nm lithography poses strict requirements on photoresist material properties and processing conditions to achieve necessary critical dimension control of patterned structures. As resist thickness and feature linewidth decrease, fundamental materials properties of the confined resist polymer can deviate from bulk values and impact important processing parameters such as the postexposure bake (PEB) temperature. The effects of these confinement-induced deviations on image or linewidth spread have not been explored. In this work, we characterize the resist thickness dependence of the spatial extent of the reaction-diffusion process in a chemically amplified photoresist system under varying processing conditions. Bilayer samples are prepared with a lower layer of a protected polymer (p-tert-butoxycarboxystyrene) and a top layer of a de-protected polymer [poly (4-hydroxystyrene)] loaded with a photoacid generator. After flood exposure, PEB, and development, changes in the thickness of the protected polymer provide a measure of the spatial extent of the reaction front between the polymer layers. The velocity of the reaction front is significantly reduced with decreasing thickness of the protected polymer layer under identical processing conditions. (C) 2001 American Vacuum Society.
引用
收藏
页码:2699 / 2704
页数:6
相关论文
共 28 条
[1]   Moving boundary transport model for acid diffusion in chemically amplified resists [J].
Croffie, E ;
Cheng, MS ;
Neureuther, A .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1999, 17 (06) :3339-3344
[2]   On-wafer photoacid determination and imaging technique for chemically amplified photoresists [J].
Dentinger, PM ;
Lu, B ;
Taylor, JW ;
Bukofsky, SJ ;
Feke, GD ;
Hessman, D ;
Grober, RD .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (06) :3767-3772
[3]   EFFECT OF ACID DIFFUSION ON PERFORMANCE IN POSITIVE DEEP-ULTRAVIOLET RESISTS [J].
FEDYNYSHYN, TH ;
THACKERAY, JW ;
GEORGER, JH ;
DENISON, MD .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1994, 12 (06) :3888-3894
[4]   POLY(PARA-TERT-BUTOXYCARBONYLOXYSTYRENE) - A CONVENIENT PRECURSOR TO PARA-HYDROXYSTYRENE RESINS [J].
FRECHET, JMJ ;
EICHLER, E ;
ITO, H ;
WILLSON, CG .
POLYMER, 1983, 24 (08) :995-1000
[5]   Thermal probe measurements of the glass transition temperature for ultrathin polymer films as a function of thickness [J].
Fryer, DS ;
Nealey, PF ;
de Pablo, JJ .
MACROMOLECULES, 2000, 33 (17) :6439-6447
[6]   Study of acid diffusion in resist near the glass transition temperature [J].
Fryer, DS ;
Bollepali, S ;
de Pablo, JJ ;
Nealey, PF .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1999, 17 (06) :3351-3355
[7]  
GALL TP, 1990, POLYMER, V31, P1491
[8]   Small molecule probe diffusion in thin and ultrathin supported polymer films [J].
Hall, DB ;
Torkelson, JM .
MACROMOLECULES, 1998, 31 (25) :8817-8825
[9]   Determination of coupled acid catalysis-diffusion processes in a positive-tone chemically amplified photoresist [J].
Houle, FA ;
Hinsberg, WD ;
Morrison, M ;
Sanchez, MI ;
Wallraff, G ;
Larson, C ;
Hoffnagle, J .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (04) :1874-1885
[10]   Acid and base diffusion in chemically amplified DUV resists [J].
Itani, T ;
Yoshino, H ;
Hashimoto, S ;
Yamana, M ;
Samoto, N ;
Kasama, K .
MICROELECTRONIC ENGINEERING, 1997, 35 (1-4) :149-152