Thermal resistance of bacterial spores in milk-based beverages supplemented with nisin

被引:22
作者
Beard, BM
Sheldon, BW
Foegeding, PM
机构
[1] N Carolina State Univ, Dept Poultry Sci, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Dept Food Sci, Raleigh, NC 27695 USA
关键词
D O I
10.4315/0362-028X-62.5.484
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The effect of nisin, added in the form of Nisaplin, on the thermal resistance of bacterial spores and the effects of medium composition, exposure time, and pH on nisin enhancement of heat sensitivity were evaluated. Nisin apparently required specific nutrients to sensitize spores to heat. For example, D-130 degrees C values of approximately 10 s were observed in sodium phosphate buffer with and without 6% sucrose with no significant (P greater than or equal to 0.05) differences detected as a result of increased nisin concentration. In a nutrient-rich chocolate milk model system (CMMS), increasing either the time of exposure to nisin (5, 15, or 24 h) before heating or nisin concentration (0, 2,000, or 4,000 IU/ml) increased the sensitivity of Bacillus stearothermophilus spores to heat. In the CMMS with 10 to 12% fat cocoa powder, increasing nisin concentration (at 5 h of exposure) significantly (P less than or equal to 0.05) reduced D-130 degrees C values; D-130 degrees C values were 21.7, 17.2, and 17.8 s, respectively, for the 0-, 2,000-, and 4,000-IU/ml nisin treatments. Fifteen and 24 h of exposure further reduced D-130 degrees C values in the nisin-containing treatments compared to the control (0 IU of nisin per ml). A lower-fat CMMS (0 to 1% fat cocoa powder) had lower D-130 degrees C values (19.3, 15.8, and 14.7 s for the 0-, 2,000-, and 4,000-IU/ml nisin treatments, respectively). Nisin activity was enhanced by lowering pH in the CMMS (10 to 12% fat cocoa powder), with reductions in D-130 degrees C values across all pH values (ranging from 18.0% at pH 6.4 to 41.9% at pH 5.0). z(D) values were 9.6, 9.0, and 8.4 degrees C for the 0-, 2,000-, and 4,000-IU/ml nisin treatments, respectively. Spores of B. licheniformis yielded results similar to those obtained with B. stearothermophilus. For example, decreasing CMMS (10 to 12% fat cocoa powder) pH values from 6.4 to 5.0 produced D-100 degrees C values of 3.3, 2.8, and 2.8 min (pH 6.4) and 1.0, 0.8, and 0.8 min (pH 5.0) for the 0-, 2,000-, and 4,000-IU/ml nisin treatments. This study clearly verified that the addition of Nisaplin to dairy-based beverages, such as a chocolate milk drink, or other foods intended to be heated reduces the thermal resistance of selected bacterial spores. Increased spore sensitivity to heat may provide food processors with an opportunity to reduce their thermal processes and expenses while maintaining product quality, functionality, and shelf stability.
引用
收藏
页码:484 / 491
页数:8
相关论文
共 37 条