Room-temperature chemical vapor deposition and mass detection on a heated atomic force microscope cantilever

被引:43
作者
Sunden, EO [1 ]
Wright, TL [1 ]
Lee, J [1 ]
King, WP [1 ]
Graham, S [1 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2164916
中图分类号
O59 [应用物理学];
学科分类号
摘要
This letter reports the localized room-temperature chemical vapor deposition of carbon nanotubes (CNTs) onto an atomic force microscope cantilever having an integrated heater, using the cantilever self-heating to provide temperatures required for CNT growth. Precise temperature calibration of the cantilever was possible and the CNTs were synthesized at a cantilever heater temperature of 800 degrees C in reactive gases at room temperature. Scanning electron microscopy confirmed the CNTs were vertically aligned and highly localized to only the heater area of the cantilever. The cantilever mechanical resonance decreased from 119.10 kHz to 118.23 kHz upon CNT growth, and then returned to 119.09 kHz following cantilever cleaning, indicating a CNT mass of 1.4x10(-14) kg. This technique for highly local growth and measurement of deposited CNTs creates new opportunities for interfacing nanomaterials with microstructures.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 24 条
[1]  
ABEL MR, 2005, SEMITHERM, V21, P235
[2]   MEASURING THE NANOMECHANICAL PROPERTIES AND SURFACE FORCES OF MATERIALS USING AN ATOMIC FORCE MICROSCOPE [J].
BURNHAM, NA ;
COLTON, RJ .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1989, 7 (04) :2906-2913
[3]   RESONANCE RESPONSE OF SCANNING FORCE MICROSCOPY CANTILEVERS [J].
CHEN, GY ;
WARMACK, RJ ;
THUNDAT, T ;
ALLISON, DP ;
HUANG, A .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1994, 65 (08) :2532-2537
[4]   Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage [J].
Chui, BW ;
Stowe, TD ;
Ju, YS ;
Goodson, KE ;
Kenny, TW ;
Mamin, HJ ;
Terris, BD ;
Ried, RP ;
Rugar, D .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1998, 7 (01) :69-78
[5]   A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE [J].
DEHEER, WA ;
CHATELAIN, A ;
UGARTE, D .
SCIENCE, 1995, 270 (5239) :1179-1180
[6]   Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts [J].
Delzeit, L ;
Nguyen, CV ;
Chen, B ;
Stevens, R ;
Cassell, A ;
Han, J ;
Meyyappan, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (22) :5629-5635
[7]   Local synthesis of silicon nanowires and carbon nanotubes on microbridges [J].
Englander, O ;
Christensen, D ;
Lin, LW .
APPLIED PHYSICS LETTERS, 2003, 82 (26) :4797-4799
[8]   Dielectrophoretic batch fabrication of bundled carbon nanotube thermal sensors [J].
Fung, CMKM ;
Wong, VTS ;
Chan, RHM ;
Li, WJ .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2004, 3 (03) :395-403
[9]   Growth of nanotubes for probe microscopy tips [J].
Hafner, JH ;
Cheung, CL ;
Lieber, CM .
NATURE, 1999, 398 (6730) :761-762
[10]   Multiwalled carbon-nanotube actuators [J].
Hughes, M ;
Spinks, GM .
ADVANCED MATERIALS, 2005, 17 (04) :443-+