EXCITED RANDOM WALK

被引:76
作者
Benjamini, Itai [1 ]
Wilson, David B. [2 ]
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[2] Microsoft Res, One Microsoft Way, Redmond, WA 98052 USA
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2003年 / 8卷
关键词
Perturbed random walk; transience;
D O I
10.1214/ECP.v8-1072
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A random walk on Z(d) is excited if the first time it visits a vertex there is a bias in one direction, but on subsequent visits to that vertex the walker picks a neighbor uniformly at random. We show that excited random walk on Z(d) is transient iff d > 1.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 16 条
[1]   RANDOM WALKS THAT AVOID THEIR PAST CONVEX HULL [J].
Angel, Omer ;
Benjamini, Itai ;
Virag, Balint .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2003, 8 :6-16
[2]  
Bass RF, 2002, ANN PROBAB, V30, P1369
[3]   Walks on the slit plane [J].
Bousquet-Mélou, M ;
Schaeffer, G .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (03) :305-344
[4]  
Davis B, 1996, ANN PROBAB, V24, P2007
[5]   Brownian motion and random walk perturbed at extrema [J].
Davis, B .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (04) :501-518
[6]  
Davis Burgess, 1990, THEORY RELAT FIELDS, V84, P203
[7]  
Doyle P. G., 1984, ARXIVMATHPR0001057 M
[8]  
Durrett R, 1996, PROBABILITY THEORY E
[9]  
DVORETZKY A, 1951, P 2 BERK S MATH STAT, P353
[10]   EXTENDED WATSON INTEGRALS FOR CUBIC LATTICES [J].
GLASSER, ML ;
ZUCKER, IJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (05) :1800-1801