BPS black holes, quantum attractor flows, and automorphic forms

被引:87
作者
Gunaydin, M [1 ]
Neitzke, A
Pioline, B
Waldron, A
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[2] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[3] Univ Paris 06, LPTHE, F-75252 Paris, France
[4] Univ Paris 07, LPTHE, F-75252 Paris, France
[5] ENS, LPTENS, Dept Phys, F-75005 Paris, France
[6] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
来源
PHYSICAL REVIEW D | 2006年 / 73卷 / 08期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.73.084019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a program for counting microstates of four-dimensional BPS black holes in N >= 2 supergravities with symmetric-space valued scalars by exploiting the symmetries of timelike reduction to three dimensions. Inspired by the equivalence between the four-dimensional attractor flow and geodesic flow on the three-dimensional scalar manifold, we radially quantize stationary, spherically symmetric BPS geometries. Connections between the topological string amplitude, attractor wave function, the Ooguri-Strominger-Vafa conjecture and the theory of automorphic forms suggest that black hole degeneracies are counted by Fourier coefficients of modular forms for the three-dimensional U-duality group, associated to special unipotent representations which appear in the supersymmetric Hilbert space of the quantum attractor flow.
引用
收藏
页数:9
相关论文
共 60 条
[1]   Black holes, q-deformed 2d Yang-Mills, and non-perturbative topological strings [J].
Aganagic, M ;
Ooguri, H ;
Saulina, N ;
Vafa, C .
NUCLEAR PHYSICS B, 2005, 715 (1-2) :304-348
[2]   MATTER COUPLINGS IN N=2 SUPERGRAVITY [J].
BAGGER, J ;
WITTEN, E .
NUCLEAR PHYSICS B, 1983, 222 (01) :1-10
[3]  
Baston R., 1992, J. Geom. Phys., V8, P29, DOI DOI 10.1016/0393-0440(92)90042-Y
[4]  
Borel A., 1966, ALGEBRAIC GROUPS DIS, P199
[5]   Quantization of the Reissner-Nordstrom black hole [J].
Breitenlohner, P ;
Maison, D ;
Hollmann, H .
PHYSICS LETTERS B, 1998, 432 (3-4) :293-297
[6]   4-DIMENSIONAL BLACK-HOLES FROM KALUZA-KLEIN THEORIES [J].
BREITENLOHNER, P ;
MAISON, D ;
GIBBONS, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 120 (02) :295-333
[7]   MINIMAL REPRESENTATIONS, GEOMETRIC-QUANTIZATION, AND UNITARITY [J].
BRYLINSKI, R ;
KOSTANT, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (13) :6026-6029
[8]   Hamiltonian formalism for black holes and quantization [J].
Cavaglia, Marco ;
de Alfaro, Vittorio ;
Filippov, Alexandre T. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1995, 4 (05) :661-672
[9]   The symplectic structure of N=2 supergravity and its central extension [J].
Ceresole, A ;
DAuria, R ;
Ferrara, S .
NUCLEAR PHYSICS B, 1996, :67-74
[10]  
Cortés V, 2005, J HIGH ENERGY PHYS