Illustrating stability properties of numerical relativity in electrodynamics

被引:24
作者
Knapp, A [1 ]
Walker, EJ
Baumgarte, TW
机构
[1] Bowdoin Coll, Dept Phys & Astron, Brunswick, ME 04011 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
关键词
D O I
10.1103/PhysRevD.65.064031
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that a reformulation of the Arnowitt-Deser-Misner equations in general relativity, which has dramatically improved the stability properties of numerical implementations, has a direct analogue in classical electrodynamics. We numerically integrate both the original and the revised versions of Maxwell's equations, and show that their distinct numerical behavior reflects the properties found in linearized general relativity. Our results shed further light on the stability properties of general relativity, illustrate them in a very transparent context, and may provide a useful framework for further improvement of numerical schemes.
引用
收藏
页数:5
相关论文
共 19 条
[1]   Gravitational wave extraction and outer boundary conditions by perturbative matching [J].
Abrahams, AM ;
Rezzolla, L ;
Rupright, ME ;
Anderson, A ;
Anninos, P ;
Baumgarte, TW ;
Bishop, NT ;
Brandt, SR ;
Browne, JC ;
Camarda, K ;
Choptuik, MW ;
Cook, GB ;
Correll, RR ;
Evans, CR ;
Finn, LS ;
Fox, GC ;
Gomez, R ;
Haupt, T ;
Huq, MF ;
Kidder, LE ;
Klasky, SA ;
Laguna, P ;
Landry, W ;
Lehner, L ;
Lenaghan, J ;
Marsa, RL ;
Masso, J ;
Matzner, RA ;
Mitra, S ;
Papadopoulos, P ;
Parashar, M ;
Saied, F ;
Saylor, PE ;
Scheel, MA ;
Seidel, E ;
Shapiro, SL ;
Shoemaker, D ;
Smarr, L ;
Szilagyi, B ;
Teukolsky, SA ;
van Putten, MHPM ;
Walker, P ;
Winicour, J ;
York, JW .
PHYSICAL REVIEW LETTERS, 1998, 80 (09) :1812-1815
[2]   Simple excision of a black hole in 3+1 numerical relativity -: art. no. 104006 [J].
Alcubierre, M ;
Brügmann, B .
PHYSICAL REVIEW D, 2001, 63 (10)
[3]   Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity -: art. no. 124011 [J].
Alcubierre, M ;
Allen, G ;
Brügmann, B ;
Seidel, E ;
Suen, WM .
PHYSICAL REVIEW D, 2000, 62 (12) :1-15
[4]   Towards a stable numerical evolution of strongly gravitating systems in general relativity:: The conformal treatments -: art. no. 044034 [J].
Alcubierre, M ;
Brügmann, B ;
Dramlitsch, T ;
Font, JA ;
Papadopoulos, P ;
Seidel, E ;
Stergioulas, N ;
Takahashi, R .
PHYSICAL REVIEW D, 2000, 62 (04) :1-16
[5]   Fixing Einstein's equations [J].
Anderson, A ;
York, JW .
PHYSICAL REVIEW LETTERS, 1999, 82 (22) :4384-4387
[6]  
Arnowitt R. L., 1962, GRAVITATION INTRO CU
[7]   Numerical integration of Einstein's field equations [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 59 (02)
[8]   NEW FORMALISM FOR NUMERICAL RELATIVITY [J].
BONA, C ;
MASSO, J ;
SEIDEL, E ;
STELA, J .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :600-603
[9]   Well-posed forms of the 3+1 conformally-decomposed Einstein equations [J].
Frittelli, S ;
Reula, OA .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (10) :5143-5156
[10]   Cure for unstable numerical evolutions of single black holes: Adjusting the standard ADM equations in the spherically symmetric case [J].
Kelly, B ;
Laguna, P ;
Lockitch, K ;
Pullin, J ;
Schnetter, E ;
Shoemaker, D ;
Tiglio, M .
PHYSICAL REVIEW D, 2001, 64 (08)