Attractors for Stochastic lattice dynamical systems

被引:282
作者
Bates, PW [1 ]
Lisei, H
Lu, KN
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Univ Babes Bolyai, Fac Math & Comp Sci, RO-400084 Cluj Napoca, Romania
[3] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Stochastic lattice differential equations; random attractors;
D O I
10.1142/S0219493706001621
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a one-dimensional lattice with diffusive nearest neighbor interaction, a dissipative nonlinear reaction term and additive independent white noise at each node. We prove the existence of a compact global random attractor within the set of tempered random bounded sets. An interesting feature of this is that, even though the spatial domain is unbounded and the solution operator is not smoothing or compact, pulled back bounded sets of initial data converge under the forward flow to a random compact invariant set.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 41 条
[11]  
CHOW SN, 1996, RANDOM COMPUT DYN, V4, P109
[12]   CELLULAR NEURAL NETWORKS - APPLICATIONS [J].
CHUA, LO ;
YANG, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10) :1273-1290
[13]   CELLULAR NEURAL NETWORKS - THEORY [J].
CHUA, LO ;
YANG, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10) :1257-1272
[14]   THE CNN PARADIGM [J].
CHUA, LO ;
ROSKA, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1993, 40 (03) :147-156
[15]   Random attractors [J].
Crauel H. ;
Debussche A. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1997, 9 (2) :307-341
[16]   Random point attractors versus random set attractors [J].
Crauel, H .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 :413-427
[17]   ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS [J].
CRAUEL, H ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) :365-393
[18]  
DaPrato G., 2014, Stochastic Equations in Infinite Dimensions, V152, P493, DOI [10.1017/CBO9781107295513, 10.1017/CBO9780511666223]
[19]   Edge of chaos and local activity domain of FitzHugh-Nagumo equation [J].
Dogaru, R ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (02) :211-257
[20]   PROPAGATING WAVES IN DISCRETE BISTABLE REACTION-DIFFUSION SYSTEMS [J].
ERNEUX, T ;
NICOLIS, G .
PHYSICA D-NONLINEAR PHENOMENA, 1993, 67 (1-3) :237-244