In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite: second cycle analysis

被引:62
作者
Chevalier, Frederic [1 ]
Poli, Fabrizia [1 ]
Montigny, Benedicte [2 ]
Letellier, Michel [1 ,3 ]
机构
[1] CNRS Univ, CRMD, F-45071 Orleans 02, France
[2] Univ Tours, PCM2E, EA 6299, F-37200 Tours, France
[3] Univ Tours, IUT GEII, F-37200 Tours, France
关键词
SEEBECK COEFFICIENT; INSERTION; NMR; THERMODYNAMICS; CARBON; IONS;
D O I
10.1016/j.carbon.2013.04.078
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphite is used in the lithium-ion batteries as a negative electrode. We use continuous, in situ, operando Li-7 nuclear magnetic resonance (NMR) to show, in real time, the progressive intercalation and de-intercalation of lithium in graphite when a battery is charged and discharged. We obtain all the Li-graphite intercalation compound stages through an electrochemical path. We explain the overvoltages by transient entropic and Peltier effects. The sample is a plastic cell, NMR compatible, made of commercial graphite, commercial electrolyte and lithium metal foil. We analyze the NMR characteristics of the Li-GIC stages: line shift, quadrupolar frequencies, line width (Li diffusion), line intensity and area as a function of x = Li/C-6. This allows us to estimate the lithium quantities in each stage at each step. Two facts differ from the theoretical stage n formation: for the C/20 cycling rate, we find an hysteresis in the filling/emptying of the dilute (LiC(9)n) stages, and we find another NMR line synchronous with LiC6. The lithium metal line also provides quantitative information on the lithium deposited as dendrites when x diminishes, in de-intercalation. This paper presents experimental NMR data over two cycles, and is an extension of the first cycle analysis published earlier. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:140 / 153
页数:14
相关论文
共 30 条
[1]  
ABRAGAM A, 1961, PRINCIPES MAGNETISME
[2]   Revisited structures of dense and dilute stage II lithium-graphite intercalation compounds [J].
Billaud, D ;
Henry, FX ;
Lelaurain, M ;
Willmann, P .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1996, 57 (6-8) :775-781
[3]   In situ 7Li-nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons [J].
Chevallier, F ;
Letellier, M ;
Morcrette, M ;
Tarascon, JM ;
Frackowiak, E ;
Rouzaud, JN ;
Béguin, F .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (11) :A225-A228
[4]  
CONARD J, 1994, MOL CRYST LIQ CRYS A, V244, pA25
[5]   PHASE-DIAGRAM OF LIXC6 [J].
DAHN, JR .
PHYSICAL REVIEW B, 1991, 44 (17) :9170-9177
[6]   Live scanning electron microscope observations of dendritic growth in lithium/polymer cells [J].
Dollé, M ;
Sannier, L ;
Beaudoin, B ;
Trentin, M ;
Tarascon, JM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (12) :A286-A289
[7]  
Goudet G., 1957, ELECT IND, P56
[8]  
Goudet G, 1962, ELECT IND
[9]   A 7Li NMR study of a hard carbon for lithium-ion rechargeable batteries [J].
Guérin, K ;
Ménétrier, M ;
Février-Bouvier, A ;
Flandrois, S ;
Simon, B ;
Biensan, P .
SOLID STATE IONICS, 2000, 127 (3-4) :187-198
[10]   Real-Time NMR Investigations of Structural Changes in Silicon Electrodes for Lithium-Ion Batteries [J].
Key, Baris ;
Bhattacharyya, Rangeet ;
Morcrette, Mathieu ;
Seznec, Vincent ;
Tarascon, Jean-Marie ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (26) :9239-9249