Interior-point algorithms, penalty methods and equilibrium problems

被引:50
作者
Benson, Hande Y. [1 ]
Sen, Arun
Shanno, David F.
Vanderbei, Robert J.
机构
[1] Drexel Univ, LeBow Coll Business, Dept Decis Sci, Philadelphia, PA 19104 USA
[2] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[3] Rutgers State Univ, RUTCOR, Rutgers Ctr Operat Res, New Brunswick, NJ 08903 USA
关键词
interior-point methods; nonlinear programming; penalty methods; equilibrium problems; complementarity;
D O I
10.1007/s10589-005-3908-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we consider the question of solving equilibrium problems-formulated as complementarity problems and, more generally, mathematical programs with equilibrium constraints (MPECs)-as nonlinear programs, using an interior-point approach. These problems pose theoretical difficulties for nonlinear solvers, including interior-point methods. We examine the use of penalty methods to get around these difficulties and provide substantial numerical results. We go on to show that penalty methods can resolve some problems that interior-point algorithms encounter in general.
引用
收藏
页码:155 / 182
页数:28
相关论文
共 19 条
[1]  
Anitescu M., ANLMCSP7930200
[2]   Interior-point methods for nonconvex nonlinear programming: Jamming and numerical testing [J].
Benson, HY ;
Shanno, DF ;
Vanderbei, RJ .
MATHEMATICAL PROGRAMMING, 2004, 99 (01) :35-48
[3]   Interior-point methods for nonconvex nonlinear programming: Filter methods and merit functions [J].
Benson, HY ;
Vanderbei, RJ ;
Shanno, DF .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) :257-272
[4]   An interior point algorithm for large-scale nonlinear programming [J].
Byrd, RH ;
Hribar, ME ;
Nocedal, J .
SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (04) :877-900
[5]   Engineering and economic applications of complementarity problems [J].
Ferris, MC ;
Pang, JS .
SIAM REVIEW, 1997, 39 (04) :669-713
[6]  
Ferris MC., 2005, FRONTIERS APPL GEN E, P67
[7]  
FERRIS MC, 2002, HDB APPL OPTIMIZATIO, P514
[8]  
Fletcher H, 2004, CHEM WORLD-UK, V1, P15
[9]   On the global convergence of a filter SQP algorithm [J].
Fletcher, R ;
Leyffer, S ;
Toint, PL .
SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (01) :44-59
[10]   SNOPT: An SQP algorithm for large-scale constrained optimization [J].
Gill, PE ;
Murray, W ;
Saunders, MA .
SIAM JOURNAL ON OPTIMIZATION, 2002, 12 (04) :979-1006