Extremely sharp carbon nanocone probes for atomic force microscopy imaging

被引:62
作者
Chen, IC
Chen, LH
Ye, XR
Daraio, C
Jin, S [1 ]
Orme, CA
Quist, A
Lal, R
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Univ Calif Santa Barbara, Neurosci Res Inst, Santa Barbara, CA 93106 USA
关键词
D O I
10.1063/1.2193435
中图分类号
O59 [应用物理学];
学科分类号
摘要
A simple and reliable catalyst patterning technique combined with electric-field-guided growth is utilized to synthesize a sharp and high-aspect-ratio carbon nanocone probe on a tipless cantilever for atomic force microscopy. A single carbon nanodot produced by an electron-beam-induced deposition serves as a convenient chemical etch mask for catalyst patterning, thus eliminating the need for complicated, resist-based, electron-beam lithography for a nanoprobe fabrication. A gradual, sputtering-induced size reduction and eventual removal of the catalyst particle at the probe tip during electric-field-guided growth creates a sharp probe with a tip radius of only a few nanometers. These fabrication processes are amenable for the wafer-scale synthesis of multiple probes. High resolution imaging of three-dimensional features and deep trenches, and mechanical durability enabling continuous operation for many hours without noticeable image deterioration have been demonstrated.
引用
收藏
页数:3
相关论文
共 19 条
[1]   Multiple sharp bendings of carbon nanotubes during growth to produce zigzag morphology [J].
AuBuchon, JF ;
Chen, LH ;
Gapin, AI ;
Kim, DW ;
Daraio, C ;
Jin, SH .
NANO LETTERS, 2004, 4 (09) :1781-1784
[2]   On-chip vacuum microtriode using carbon nanotube field emitters [J].
Bower, C ;
Zhu, W ;
Shalom, D ;
Lopez, D ;
Chen, LH ;
Gammel, PL ;
Jin, S .
APPLIED PHYSICS LETTERS, 2002, 80 (20) :3820-3822
[3]   ELECTRON-BEAM FABRICATION OF 80-A METAL STRUCTURES [J].
BROERS, AN ;
MOLZEN, WW ;
CUOMO, JJ ;
WITTELS, ND .
APPLIED PHYSICS LETTERS, 1976, 29 (09) :596-598
[4]   Control of carbon nanotube morphology by change of applied bias field during growth [J].
Chen, LH ;
AuBuchon, JF ;
Gapin, A ;
Daraio, C ;
Bandaru, P ;
Jin, S ;
Kim, DW ;
Yoo, IK ;
Wang, CM .
APPLIED PHYSICS LETTERS, 2004, 85 (22) :5373-5375
[5]   Growth and fabrication with single-walled carbon nanotube probe microscopy tips [J].
Cheung, CL ;
Hafner, JH ;
Odom, TW ;
Kim, K ;
Lieber, CM .
APPLIED PHYSICS LETTERS, 2000, 76 (21) :3136-3138
[6]   Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J].
Chhowalla, M ;
Teo, KBK ;
Ducati, C ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Ferrari, AC ;
Roy, D ;
Robertson, J ;
Milne, WI .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5308-5317
[7]   Growth of carbon nanofibers on tipless cantilevers for high resolution topography and magnetic force imaging [J].
Cui, H ;
Kalinin, SV ;
Yang, X ;
Lowndes, DH .
NANO LETTERS, 2004, 4 (11) :2157-2161
[8]   Nanotubes as nanoprobes in scanning probe microscopy [J].
Dai, HJ ;
Hafner, JH ;
Rinzler, AG ;
Colbert, DT ;
Smalley, RE .
NATURE, 1996, 384 (6605) :147-150
[9]  
Dresselhaus MS, 2001, CARBON NANOTUBES SYN
[10]   Rotational actuators based on carbon nanotubes [J].
Fennimore, AM ;
Yuzvinsky, TD ;
Han, WQ ;
Fuhrer, MS ;
Cumings, J ;
Zettl, A .
NATURE, 2003, 424 (6947) :408-410